Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Условное графическое обозначение (УГО) диодов

Читайте также:
  1. Безусловное и условное торможение.
  2. Болтовое соединение: изображение и обозначение.
  3. Виды движения (равномерное, равноускоренное) и их графическое описание
  4. Винтовое соединение: изображение и обозначение
  5. Все родильницы в послеродовом периоде до выписки из родильного дома проходят флюорографическое обследование органов грудной клетки.
  6. Вторичное смесительное упрощение, когда народ слабеет и превращается в этнографическое состояние.
  7. Географическое и геополитическое положение стран Зарубежной Европы
  8. Географическое положение
  9. Географическое положение
  10. Географическое положение

Рис. 5. Устройство плоскостного диода.

Рис. 1. Полупроводниковые диоды.

Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную.

Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).

 

Рисунок 3. Атом мышьяка в решетке германия. Полупроводник n-типа

 

На рис. 3 показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле nn >> np. Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.

 

Рисунок 4. Атом индия в решетке германия. Полупроводник p-типа

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In). На рис. 4 показан атом индия, который с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия. Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: np >> nn. Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями свободного заряда в полупроводниках p-типа являются дырки.

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена эстафетным перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Для полупроводников n- и p-типов закон Ома выполняется в определенных интервалах сил тока и напряжений при условии постоянства концентраций свободных носителей.

 

 

Свойства р-п-перехода 1. Образуется запирающий слой, образованный зарядами ионов примеси: d=10-7 м, Dj = 0.4—0,8 В.
2. Направление внешнего поля (источника) совпадает с направлением контактного поля. Тока основных носителей заряда нет. Существует слабый ток неосновных носителей заряда. Такое включение называется обратным.
3. Прямое включение. Существует ток основных носителей заряда. p-n-переход пропускает электрический ток только в одном направлении (свойство односторонней проводимости).

 

Полупроводниковый диод - это полупроводниковый прибор с одним электронно-дырочным переходом (основная часть) и двумя выводами. Примеры внешнего вида диодов приведены на рис. 4.

 

По конструкции полупроводниковые диоды могут быть плоскостными и точечными. Устройство плоскостного диода показано на рис. 5.

К кристаллодержателю припаивается пластинка полупроводника n-типа. Кристаллодержатель – это металлическое основание плоскостного диода. Сверху в пластинку полупроводника вплавляется капля трёхвалентного металла, обычно индия. Атомы индия диффундируют (проникают) в полупроводниковую пластинку и образуют у её поверхности слой р-типа. Между слоями р- и n-типов образуется электронно-дырочный переход (ЭДП). К кристаллодержателю и индию припаиваются проводники, которые служат выводами диода. Для предохранения диода от механических повреждений, попадания света, пыли и влаги на полупроводник, его помещают в герметичный корпус.

На рис. 5 позиция 1 – это вывод р-области, позиция 2 – вывод n-области.

Точечный полупроводниковый диод состоит из пластинки полупроводника n-типа и заострённой пружинки из вольфрама или фосфористой бронзы диаметром около 0,1 мм. Через прижатую к полупроводниковой пластинке пружинку пропускают электрический ток большой силы, в результате чего металлическая пружинка сваривается с полупроводниковой пластинкой, образуя под своим остриём р-область. Между р-областью и полупроводником n-типа возникает электронно-дырочный переход.

Острая вершина треугольника в указывает на направление протекания прямого тока через диод. То есть для того, чтобы диод пропускал ток, включать его нужно так, чтобы на основание треугольника подавался «плюс» (или на прямолинейный отрезок подавался «минус»). Если включить диод в обратном направлении, то он не будет пропускать ток (потому и называется полупроводником – пропускает ток только в одном направлении). Пример включения диода показан на рис. 6.

 

р-область диода (то есть вывод, на который в прямом направлении подаётся «плюс») носит название анод. Противоположный вывод называется катод.


<== предыдущая страница | следующая страница ==>
Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковый диод | Полупроводниковые приборы

Дата добавления: 2014-02-26; просмотров: 620; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.003 сек.