Студопедия

Главная страница Случайная лекция

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика






Темы по биологии. 4 страница

Читайте также:
  1. Введение 1 страница
  2. Введение 10 страница
  3. Введение 2 страница
  4. Введение 3 страница
  5. Введение 4 страница
  6. Введение 5 страница
  7. Введение 6 страница
  8. Введение 7 страница
  9. Введение 8 страница
  10. Введение 9 страница

· слияние нервных валиков и образование нервной трубки;

· смыкание эктодермы над нервной трубкой.

Скопление клеток между эктодермой и нервной трубкой называется ганглиозной пластинкой. С 21 по 35-й день дифференцируется мезодерма — сомитный период. Наступление сомитного периода знаменуется образованием туловищной складки, которая отделяет зародыш от внезародышевых органов и способствует замыканию кишечной трубки. В начале мезодерма дифференцируется на 3 части:

· дорсальную;

· промежуточную;

· латеральную — дорсальная и вентральная.

Клетки зародышевой мезодермы выселяются из эпибласта, формируется пресомитная мезодерма, из которой возникают сомиты (44 пары) — симметричные парные структуры по бокам от хорды и нервной трубки. В результате пролиферации клеток, их миграции и последующей агрегации из сомитомеров формируется дорсальная мезодерма. Образование сомитов происходит от головного к хвостовому концу зародыша. Новая пара сомитов образуется кзади от последней уже сформированной пары через определенный промежуток времени. Этот интервал составляет в среднем 6,5 ч. В каждом сомите различают склеротом, дерматом и миотом, их клетки имеют свои пути миграции и служат источником для различных структур.

Под влиянием хорды и нервной трубки клетки вентромедиальной области сомитов интенсивно размножаются и выселяются из сомитов, окружая хорду и вентральную часть нервной трубки — склеротом. Выселившиеся клетки дифференцируются в хрящевые и образуют позвонки, ребра, лопатки.

В оставшейся дорсолатеральной части сомита выделяют миотом (внутренний слой клеток, образующий впоследствии скелетную мускулатуру) и дерматом (наружный слой — зачаток соединительнотканной части кожи).

В каудальном отделе зародыша дорсальная мезодерма не сегментируется и называется нефрогенной тканью. Промежуточная мезодерма сегментируется с образованием сегментарных ножек — нефротомов, зачаток мочевыделительной и половой систем.

Расположенная латеральнее нефротома мезодерма, расщеплена на два листка: дорсальный и вентральный. Дорсальный листок — соматическая мезодерма, из нее образуются серозные оболочки. Вентральный листок, или спланхническая мезодерма, из нее образуется сердце, кора надпочечников, строма гонад, соединительная и гладкомышечная ткани внутренних органов и кровеносных сосудов.

6. Гистогенез и органогенез

Каждая клетка развивающегося зародыша содержит определенный набор геновгеном, совокупность генов организма — генотип.

В основе гистогенеза лежат следующие процессы:

· пролиферация — размножение;

· рост;

· эмиграция;

· индукция;

· детерминация;

· дифференцировка.

Различают энтодерму кишечную и желточного мешка. Из кишечной энтодермы развивается эпителий желудочно-кишечного тракта и крупные пищеварительные железыпечень, поджелудочная железа. Желточная энтодерма дает начало первичным клеткам крови и половым клеткам.

Различают эктодерму кожную, нейроэктодерму и внезародышевую эктодерму. Из кожной эктодермы развиваются эпидермис, волосы, ногти и железы кожи. Из нейроэктодермы развивается нервная трубка и ганглиозная пластинка. Из внезародышевой эктодермы развивается соединительная ткань.

Из мезодермы сомитов образуется дерма кожи, из миотомов сомитовпоперечно-полосатая мышечная ткань, из склеротомов сомитов — костная и хрящевая ткани. Из париетального листка спланхнотома развивается серозная оболочка брюшины, плевры, перикарда, из висцерального листка спланхнотома — эндокард, миокард. В мезенхиме зародыша образуются все виды соединительной ткани, гладкая мышечная ткань, кровеносные сосуды.



Критические периоды онтогенеза:

· гаметогенез;

· оплодотворение;

· имплантация — 7—8 сутки;

· плацентация — 3—8 недели;

· период усиленного роста головного мозга — 15—20 неделя;

· дифференцировка полового аппарата — 20—24 неделя;

· рождение;

· период новорожденности;

· период полового созревания.

 

ЛЕКЦИЯ 5. Общие принципы организации тканей. Эпителиальные ткани

1. Компоненты ткани

2. Развитие ткани в онтогенезе и филогенезе

3. Регенерация тканей

4. Интеграция тканей

5. Виды эпителиальных тканей

1. Ткань — исторически (филогенетически) сложившаяся система клеток и неклеточных структур, обладающая общностью строения, а иногда и происхождения, и специализированная на выполнение определенных функций.

Ткань — это новый (после клеток) уровень организации живой материи.

Клетки являются основными, функционально ведущими компонентами тканей. Все остальные структурные компоненты тканей являются производными клеток. Практически все ткани состоят из нескольких типов клеток. Кроме того клетки каждого типа в тканях могут находиться на разных этапах зрелости —дифференцировки). Поэтому в тканях различают такие понятия как клеточная популяция и клеточный дифферон.

Клеточная популяция — это совокупность клеток данного типа. Например, в рыхлой соединительной ткани (самой распространенной в организме) содержится: популяция фибробластов, популяция макрофагов, популяция тканевых базофилов и другие.

Клеточный дифферон или гистогенетический ряд — это совокупность клеток данного типа (данной популяции), находящихся на разных этапах дифференцировки. Исходными клетками дифферона являются стволовые клетки, далее идут несколько переходных этапов — полустволовые, молодые (бластные) и созревающие клетки, и наконец зрелые или дифференцированные клетки. Различают полные дифферон — когда в ткани содержатся клетки всех этапов развития (например, эритроцитарный дифферон в красном костном мозге или эпидермальный дифферон в эпидермисе кожи) и неполный дифферон — когда в тканях содержатся только переходные и зрелые или даже только зрелые формы клеток (например, нейроциты центральной нервной системы).

Однако ткань, это не просто скопление различных клеток. Клетки в тканях находятся в определенной взаимосвязи и функция каждой из них направлена на выполнение функции ткани. Например, макрофаги соединительной ткани, обладая высокой фагоцитарной способностью, выполняют роль "чистильщиков" ткани от чужеродных веществ или же от распадающихся собственных тканевых компонентов. При избыточном содержании таких веществ, макрофаги могут фагоцитировать в таком количестве, что неспособны их переваривать и потому гибнут.

Клетки в тканях оказывают влияние друг на друга или непосредственночерез щелевидные контакты (нексусы), посредством синапсов или на расстоянии (дистантно) — посредством выделения различных биологически активных веществ (например, лимфокинов, монокинов, кейлонов и других). На функции клеток оказывают влияние также вещества, поступающие из крови (гормоны) или из нервных окончаний (медиаторы).

Производные клеток — это симпласт и синцитий.

Симпласт — образование (структура), содержащее в единой цитоплазме большое количество ядер и органелл (общих и специальных). Симпласт образуется посредством слияния отдельных клеток. Локализация в организме: симпластотрофобласт хориона, симпласт поперечно-полосатого мышечного волокна.

Синцитий (соклетие) — образование, состоящее из клеток, соединенных между собой отростками, через которые цитоплазма одной клетки продолжается в другую клетку. Синцитий образуется в результате неполной цитотомии делящихся клеток. Локализация в организме — сперматогенный эпителий извитых канальцев семенника, пульпа эмалевого (зубного) органа.

Постклеточные образования — эритроциты, тромбоциты, роговые чешуйки эпидермиса кожи. Представляют собой клетки, лишенные ядер и большинства органеллэритроциты, или фрагменты цитоплазмы клеток (мегакариоцитов) — тромбоциты или кровяные пластинки, или же клетки (эпидермоциты), трансформированные в роговые чешуйки эпидермиса кожи.

Межклеточное вещество — также является продуктом деятельности определенных клеток. Межклеточное вещество состоит из:

· аморфного вещества;

· волокон — коллагеновых, ретикулярных, эластических.

Межклеточное вещество неодинаково выражено в разных тканях. Детальное строение и развитие структурных компонентов межклеточного вещества будет рассматриваться в лекции "Соединительные ткани".

2. Развитие тканей в онтогенезе (филогенезе)

В онтогенезе различают следующие этапы развития тканей:

· I этап топической дифференцировки — презумптивные (предположительные) зачатки тканей оказываются в определенных зонах цитоплазмы яйцеклетки, а затем и зиготы;

· II этап бластомерной дифференцировки — в результате дробления зиготы презумптивные зачатки тканей оказываются локализованными в разных бластомерах зародыша;

· III этап зачатковой дифференцировки — в результате гаструляции презумптивные зачатки тканей локализованы в различных участках зародышевых листков;

· IV этап гистогенез — процесс преобразования зачатков тканей в ткани в результате пролиферации, роста, индукции, детерминации, миграции и дифференцировки клеток.

Имеется несколько теорий развития тканей в филогенезе. Наиболее значительными из них являются:

· Закон параллельных рядов (А. А. Заварзин) — ткани животных разных классов и видов, выполняющие одинаковые функции, имеют сходное строение, так как развиваются они параллельно у разных животных филогенетического древа;

· Закон дивергентной эволюции тканей (Н. Г. Хлопин) — в филогенезе происходит расхождение признаков тканей и появление новых разновидностей ткани в пределах тканевой группы, что приводит к усложнению животных организмов и увеличению разнообразия тканей.

Имеется несколько подходов к классификации тканей. Основными являютсяморфофункциональная и генетическая. Общепринятой является морфофункциональная классификация, в соответствии с которой выделяют четыре тканевых группы:

· эпителиальные ткани;

· соединительные ткани (ткани внутренней среды, опорно-трофические ткани);

· мышечные ткани;

· нервные ткани.

Некоторые авторы (Ю. А. Афанасьев и другие) из группы соединительных тканей выделяют кровь и лимфу, как самостоятельный тканевой тип. В каждой тканевой группе (за исключением нервной ткани) выделяют несколько разновидностей или подтипов ткани, которые будут рассмотрены при изучении соответствующих тканей.

Состояние структурных компонентов тканей и их функциональная активность постоянно изменяются под воздействием внешних факторов. Прежде всего отмечаются ритмические колебания структурно-функционального состояния тканей — биологические ритмы: суточные, недельные, сезонные, годичные. Внешние факторы могут вызывать адаптивные (приспособительные) изменения и дезадаптивные, приводящие к распаду тканевых компонентов. Имеются регуляторные механизмы (внутритканевые, межтканевые, организменные), обеспечивающие поддержание структурного гомеостаза.

Внутритканевые регуляторные механизмы обеспечиваются, в частности, способностью зрелых клеток выделять биологически активные вещества — кейлоны, угнетающие размножение молодых (стволовых и бластных) клеток этой же популяции. При гибели значительной части зрелых клеток выделение кейлонов уменьшается, что стимулирует пролиферативные процессы и приводит к восстановлению численности клеток данной популяции. Межтканевые регуляторные механизмы обеспечиваются индуктивным взаимодействием, прежде всего с участием лимфоидной ткани (иммунной системы), в поддержании структурного гомеостаза. Организменные регуляторные факторы обеспечиваются влиянием эндокринной и нервной систем.

При некоторых внешних воздействиях может нарушится естественная детерминация молодых клеток, что может привести к превращению одного тканевого типа в другой. Такое явление носит название метаплазии, и осуществляется только в пределах данной тканевой группы. Например, замена однослойного призматического эпителия желудка однослойным плоским.

3. Регенерация тканей

Регенерация — восстановление клеток, направленное на поддержание функциональной активности данной системы. В регенерации различают такие понятия, как форма регенерации, уровень регенерации, способ регенерации.

Формы регенерации:

· физиологическая регенерация — восстановление клеток ткани после их естественной гибели (например, кроветворение);

· репаративная регенерация — восстановление тканей и органов после их повреждения (травмы, воспаления, хирургического воздействия и так далее).

· Уровни регенерации — соответствуют уровням организации живой материи:

· клеточный (внутриклеточный);

· тканевой;

· органный.

Способы регенерации:

· клеточный способразмножением (пролиферацией) клеток;

· внутриклеточный способвнутриклеточное восстановление органелл, гипертрофия, полиплоидия;

· заместительный способзамещение дефекта ткани или органа соединительной тканью, обычно с образованием рубца, например: образование рубцов в миокарде после инфаркта миокарда.

Факторы регулирующие регенерацию:

· гормоны — биологически активные вещества;

· медиаторы — индикаторы метаболических процессов;

· кейлоны — это вещества гликопротеидной природы, которые синтезируются соматическими клетками, основная функцияторможение клеточного созревания;

· антагонисты кейлонов — факторы роста;

· микроокружение любой клетки.

4. Интеграция тканей

Ткани, являясь одним из уровней организации живой материи, входят в состав структур более высокого уровня организации живой материи — структурно-функциональных единиц органов и в состав органов, в которых происходит интеграция (объединение) нескольких тканей. Механизмы интеграции: межтканевые (обычно индуктивные) взаимодействия, эндокринные влияния, нервные влияния. Например, в состав сердца входят сердечная мышечная ткань, соединительная ткань, эпителиальная ткань. При заболеваниях органов вначале обычно поражается одна ткань, что затем может сказаться и на состоянии других тканей, благодаря индуктивным межтканевым взаимодействиям.

Эпителиальные ткани или эпителий образуют внешние и внутренние покровы организма, а также большинство желез.

Функции эпителиальной ткани:

· защитная (барьерная);

· секреторная (секретирует ряд веществ);

· экскреторная (выделяет ряд веществ);

· всасывательная (эпителий желудочно-кишечного тракта, полости рта).

Структурно-функциональные особенности эпителиальных тканей:

· эпителиальные клетки всегда располагаются пластами;

· эпителиальные клетки всегда располагаются на базальной мембране;

· эпителиальные ткани не содержат кровеносных и лимфатических сосудов, исключение, сосудистая полоска внутреннего уха (кортиев орган);

· эпителиальные клетки строго дифференцированы на апикальный и базальный полюс;

· эпителиальные ткани имеют высокую регенераторную способность;

· в эпителиальной ткани имеется преобладание клеток над межклеточным веществом или даже его отсутствие.

Структурные компоненты эпителиальной ткани:

I. Эпителиоциты — являются основными структурными элементами эпителиальных тканей. Располагаются в эпителиальных пластах вплотную и связаны между собой различными типами межклеточных контактов:

· простыми;

· десмосомами;

· плотными;

· щелевидными (нексусами).

К базальной мембране клетки прикрепляются посредством полудесмосом. В различных эпителиях, а часто и в одном типе эпителия, содержатся разные типы клеток (несколько клеточных популяций). В большинстве эпителиальных клеток ядро локализуется базально, а в апикальной части присутствует секрет, который вырабатывает клетка, в середине расположены все остальные органеллы клетки. Подобная характеристика каждого типа клеток будет дана при описании конкретного эпителия.

II. Базальная мембрана — толщина около 1 мкм, состоит из:

· тонких коллагеновых фибрилл (из белка коллагена 4 типа);

· аморфного вещества (матрикса), состоящего из углеводно-белково-липидного комплекса.

5. Классификация эпителиальных тканей:

· покровные эпителии — образующие внешние и внутренние покровы;

· железистые эпителии — составляющие большинство желез организма.

Морфологическая классификация покровных эпителиев:

· однослойный плоский эпителий (эндотелий — выстилает все сосуды; мезотелий — выстилает естественные полости человека: плевральную, брюшную, перикардиальную);

· однослойный кубический эпителий — эпителий почечных канальцев;

· однослойный однорядный цилиндрический эпителий — ядра располагаются на одном уровне;

· однослойный многорядный цилиндрический эпителий — ядра располагаются на разных уровнях (легочный эпителий);

· многослойный плоский ороговевающий эпителий — кожа;

· многослойный плоский неороговевающий эпителий — полость рта, пищевод, влагалище;

· переходный эпителий — форма клеток этого эпителия зависит от функционального состояния органа, например, мочевой пузырь.

Генетическая классификация эпителиев (по Н. Г. Хлопину):

· эпидермальный тип, развивается из эктодермы — многослойный и многорядный эпителий, выполняет защитную функцию;

· энтеродермальный тип, развивается из энтодермы — однослойный цилиндрический эпителий, осуществляет процесс всасывания веществ;

· целонефродермальный тип — развивается из мезодермы — однослойный плоский эпителий, выполняет барьерную и экскреторную функции;

· эпендимоглиальный тип, развивается из нейроэктодермы, выстилает полости головного и спинного мозга;

· ангиодермальный тип — эндотелий сосудов, развивается из мезенхимы.

Железистый эпителий образует подавляющее большинство желез организма. Состоит из:

· железистых клеток — гландулоцитов;

· базальной мембраны.

Классификация желез:

I. По количеству клеток:

· одноклеточные (бокаловидная железа);

· многоклеточные — подавляющее большинство желез.

II. По способу выведения секрета из железы и по строению:

· экзокринные железы — имеют выводной проток;

· эндокринные железы — не имеют выводного протока и выделяют инкреты (гормоны) в кровь и лимфу.

III. По способу выделения секрета из железистой клетки:

· мерокриновые — потовые и слюнные железы;

· апокриновые — молочная железа, потовые железы подмышечных впадин;

· голокриновые — сальные железы кожи.

IV. По составу выделяемого секрета:

· белковые (серозные);

· слизистые;

· смешанныебелково-слизистые;

· сальные.

V. По источникам развития:

· эктодермальные;

· энтодермальные;

· мезодермальные.

VI. По строению:

· простые;

· сложные;

· разветвленные;

· неразветвленные.

Экзокринные железы состоят из концевых или секреторных отделов и выводных протоков. Концевые отделы могут иметь форму альвеолы или трубочки. Если в выводной проток открывается один концевой отдел — железа простая неразветвленная (альвеолярная или трубчатая). Если в выводной проток открываются несколько концевых отделов — железа простая разветвленная (альвеолярная, трубчатая или альвеолярно-трубчатая). Если главный выводной проток разветвляется — железа сложная, она же разветвленная (альвеолярная, трубчатая или альвеолярно-трубчатая).

Фазы секреторного цикла железистых клеток:

· поглощение исходных продуктов секретообразования;

· синтез и накопление секрета;

· выделение секрета (по мерокриновому или апокриновому типу);

· восстановление железистой клетки.

Примечание: клетки секретирующие по голокриновому типу (сальных желез) полностью разрушаются, а из камбиальных (ростковых) клеток образуются новые железистые сальные клетки.

ЛЕКЦИЯ 6. Кровь и лимфа

7. Функция и состав крови

8. Структурная и функциональная характеристика эритроцитов

9. Структурная и функциональная характеристика лейкоцитов

10. Структурная и функциональная характеристика агранулоцитов

11. Возрастные особенности крови

12. Функции и состав лимфы

1. Кровь и лимфа — это ткани внутренней среды организма, они является разновидностью соединительной ткани.

У данных видов тканей имеются следующие особенности: мезенхимальное происхождение, большой удельный вес межуточного вещества, большое разнообразие структурных компонентов.

Функции крови делятся на:

· транспортная;

· трофическая;

· дыхательная;

· защитная;

· экскреторная;

· регуляция гомеостаза.

Составные компоненты крови:

· клетки — форменные элементы;

· жидкое межклеточное вещество — плазма крови.

Масса крови составляет 5 % от массы тела человека, объем крови около 5,5 л. Депо крови — печень, селезенка, кожа и кишечник, в кишечнике может депонироваться до 1 л крови. Потеря человеком 1/3 объема крови ведет к смертельному исходу. Соотношение частей крови: плазма — 55—60 %, форменные элементы — 40—45 %. Плазма крови состоит из воды на 90—93 % и содержащихся в ней веществ — 7—10 %. В плазме содержатся белки, аминокислоты, нуклеотиды, глюкоза, минеральные вещества, продукты обмена. Белки плазмы крови: альбумины, глобулины (в том числе иммуноглобулины), фибриноген, белки-ферменты и другие. Функции плазмы — транспорт растворимых веществ.

В связи с тем, что в крови содержатся как истинные клетки (лейкоциты), так и постклеточные образования — эритроциты и тромбоциты, принято именовать их в совокупности форменными элементами.

Классификация форменных элементов:

эритроциты;

тромбоциты;

лейкоциты.

Качественный состав крови (анализ крови) определяется такими понятиями как гемограмма и лейкоцитарная формула. Гемограмма — количественное содержание форменных элементов крови в одном литре или одном миллилитре.

Гемограмма взрослого человека:

I. эритроцитов:

· у женщины — 3,7—4,9 млн в литре;

· у мужчины — 3,9—5,5 млн в литре;

· II. тромбоцитов 200—400 тыс. в литре;

· III. лейкоцитов 3,8—9,0 тыс. в литре.

2. Эритроциты преобладающая популяция форменных элементов крови. Морфологические особенности:

· не содержит ядра;

· не содержит большинства органелл;

· цитоплазма заполнена пигментным включением — гемоглобином: гемжелезо, глобин—белок.

Размеры эритроцитов:

· Нормоциты 7,1—7,9 мкм (75 %);

· Макроциты больше 8 мкм (12,5 %);

· Микроциты меньше 6 мкм (12,5 %).

Форма эритроцитов:

· двояковогнутые диски — дискоциты (80 %);

· остальные 20 % составляют сфероциты, планоциты, эхиноциты, седловидные, двуямочные, стоматоциты.

По насыщенности гемоглобином эритроциты различаются:

· нормохромные;

· гипохромные;

· гиперхромные.

Различают две формы гемоглобина:

· гемоглобин А;

· гемоглобин F — фетальный.

У взрослого человека гемоглобина А 98 %, гемоглобина F 2 %. У новорожденного ребенка гемоглобина А 20 %, гемоглобина F 80 %. Продолжительность жизни эритроцитов — 120 дней. Старые эритроциты разрушаются макрофагами, в основном, в селезенке, освобождающиеся из них железо используется созревающими эритроцитами. В периферической крови от 1 % до 5 % эритроцитов являются незрелыми и носят название ретикулоцитов. Их содержание отражает интенсивность эритроцитарного кроветворения и имеет важное диагностическое и прогностическое значение. Пойкилоцитоз — наличие в периферической крови большого количества эритроцитов разной формы. Анизоцитоз — наличие в периферической крови большого количества эритроцитов разного размера.

Функции эритроцитов:

· Дыхательная — транспорт газов (О2 и СО2);

· транспорт других веществ, абсорбированных на поверхности цитолеммы (гормонов, иммуноглобулинов, лекарственных веществ, токсинов и других).

II. Тромбоциты или кровяные пластинки, представляют собой фрагменты цитоплазмы особых клеток красного костного мозга —мегакариоцитов.

Составные части тромбоцита:

· Гиаломер — основа пластинки, окруженная цитолеммой;

· Грануломер — зернистость, представленная специфическими гранулами, а также фрагментами зернистой эндоплазматической сети, рибосомами, митохондриями и другими.

Размеры тромбоцитов — 2—3 мкм, форма округлая, овальная, отростчатая. По степени зрелости тромбоциты подразделяются на:

· юные;

· зрелые;

· старые;

· дегенеративные;

· гигантские.

Продолжительность жизни тромбоцитов — 5—8 дней. Функции тромбоцитов: участие в механизмах свертывания крови посредством склеивания пластинок и образования тромба, разрушения пластинок и выделения одного из многочисленных факторов, способствующих превращению глобулярного фибриногена в нитчатый фибрин.

3. Лейкоцитыили белые кровяные тельца, ядерные клетки крови, выполняющие защитную функцию. Содержатся в крови от нескольких часов до нескольких суток, а затем покидают кровяное русло и проявляют свои функции в основном в тканях. Лейкоциты представляют собой неоднородную группу и подразделяются на несколько популяций. Классификация лейкоцитов основана на:

· содержании гранул в цитоплазме;

· отношении к красителям по тинкториальным свойствам;

· степени зрелости клеток данного типа;

· морфологии и функции клеток;

· размера клеток.

Классификация лейкоцитов:

I. зернистые (гранулоциты)— нейтрофилы (65—75 %): юные (0—0,5 %); палочкоядерные (3—5 %); сегментоядерные (60—65 %);

эозинофилы (1—5 %);

базофилы (0,5—1,0 %);

II. незернистые (агранулоциты):

лимфоциты (20—35 %): Т-лимфоциты; В-лимфоциты;

моноциты (6—8 %).

Лейкоцитарная формула — это процентное соотношение различных форм лейкоцитов (к общему числу лейкоцитов — 100 %). В таблице классификации лейкоцитов представлена лейкоцитарная формула здорового организма.

I. Нейтрофильные лейкоциты, нейтрофилы — самая большая популяция лейкоцитов (65—75 %). Морфологические особенности нейтрофилов:

· сегментированное ядро;

· в цитоплазме имеются мелкие гранулы, окрашивающиеся в слабо оксифильный (розовый) цвет, среди которых различают неспецифические азурофильные гранулы — разновидность лизосом, специфические гранулы, другие органеллы развиты слабо. Размеры в мазке 10—12 мкм.

По степени зрелости нейтрофилы подразделяются на:

· юные (метамиелоциты)0—0,5 %;

· палочкоядерные 3—5 %;

· сегментоядерные (зрелые)60—65 %.

Увеличение процентного содержания юных и палочкоядерных форм нейтрофилов носит название сдвига лейкоцитарной формулы влево и является важным диагностическим показателем. По нейтрофилам определяют половую принадлежность крови — по наличию у одного из сегмента околоядерного сателлита (придатка) в виде барабанной палочки (у женщин). Продолжительность жизни нейтрофилов 8 дней, из них 8—12 ч они находятся в крови, а затем выходят соединительную и эпителиальную ткани, где и выполняют основные функции.

Функции нейтрофилов:

· фагоцитоз бактерий;

· фагоцитоз иммунных комплексов (антиген-антитело);

· бактериостатическая и бактериолитическая;

· выделение кейлонов и регуляция размножения лейкоцитов.

II. Эозинофильные лейкоциты или эозинофилы. Содержание в норме 1—5 %, размеры в мазках 12—14 мкм. Морфологические особенности эозинофилов:

· двухсегментное ядро;

· в цитоплазме крупная оксифильная (красная) зернистость, состоящая из двух типов гранул: специфические азурофильные — разновидность лизосом, содержащих фермент пероксидазу, неспецифические гранулы, содержащие кислую фосфатазу, другие органеллы развиты слабо.

Функции эозинофилов:

участвуют в иммунологических (аллергических и анафилактических) реакциях, угнетают (ингибируют) аллергические реакции посредством нейтрализации гистамина и серотонина несколькими способами:

· фагоцитируют гистамин и серотонин, выделяемые базофилами и тучными клетками, а также адсорбируют эти биологически активные вещества на цитолемме;

· выделяют ферменты, расщепляющие гистамин и серотонин внеклеточно;

· выделяют факторы, препятствующие выбросу гистамина и серотонина базофилами и тучными клетками;

· способны фагоцитировать бактерии, но в незначительной степени.

Участием эозинофилов в аллергических реакциях объясняется их повышенное содержание (до 20—40 % и более) в крови при различных аллергических заболеваниях (глистных инвазиях, бронхиальной астме, злокачественных новообразованиях и других). Продолжительность жизни эозинофилов 6—8 дней, из них нахождение в кровеносном русле составляет 3—8 ч.

III. Базофильные лейкоциты или базофилы

Это наименьшая популяция лейкоцитов (0,5—1 %), однако в общей массе в организме их огромное количество. Размеры в мазке 11—12 мкм. Морфологические особенности базофилов:


<== предыдущая страница | следующая страница ==>
Темы по биологии. 3 страница | Темы по биологии. 5 страница

Дата добавления: 2014-02-26; просмотров: 65; Нарушение авторских прав


lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.02 сек.