Студопедия

Главная страница Случайная лекция

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика






Темы по биологии. 13 страница

Читайте также:
  1. Введение 1 страница
  2. Введение 10 страница
  3. Введение 2 страница
  4. Введение 3 страница
  5. Введение 4 страница
  6. Введение 5 страница
  7. Введение 6 страница
  8. Введение 7 страница
  9. Введение 8 страница
  10. Введение 9 страница

4. Гистофизиология слуха

Звуки определенной частоты воспринимаются наружным ухом и передаются через слуховые косточки и овальное окно перилимфе в барабанной и вестибулярной лестницах. При этом приходят в колебательные движения вестибулярная и базилярная мембраны, а следовательно, и эндолимфа. В результате движения эндолимфы смещаются волоски сенсорных клеток, так как они прикреплены к текториальной мембране. Это приводит к возбуждению волосковых клеток, а через них — биполярных нейронов спирального ганглия, которые передают возбуждение в слуховые ядра ствола мозга, а затем в слуховую зону коры больших полушарий.

Нейронный состав анализаторов слуха и равновесия следующий:

· нейрон — биполярный нейрон спирального (орган слуха) или вестибулярного (орган равновесия) ганглиев;

· нейрон — вестибулярные ядра продолговатого мозга;

· нейрон в зрительном бугре, аксон его идет к нейронам коры полушарий.

5. Орган зрения представляет собой периферическую часть зрительного анализатора. Состоит из глазного яблока и вспомогательного аппарата (веки, слезные железы, глазодвигательные мышцы).

Глазное яблоко с морфологической точки зрения является органом слоистого типа. Оно состоит из трех оболочек:

· наружная оболочка — склера, которая на большем протяжении непрозрачна, но в переднем отделе глазного яблока переходит в прозрачную роговицу;

· средняя оболочка — сосудистая, в свою очередь, подразделяется на 3 части — собственно сосудистую оболочку, реснитчатое тело и радужную оболочку;

· внутренняя оболочка — сетчатка, зрительная часть и слепая часть.

Кроме того, в состав глазного яблока входит хрусталик, стекловидное тело, жидкость передней и задней камер глаза.

С физиологической точки зрения в глазу выделяют несколько функциональных аппаратов:

· рецепторный аппарат — сетчатка;

· диоптрический или светопреломляющий аппарат — роговица, хрусталик, стекловидное тело, жидкость камер глаза;

· аккомодационный аппарат — радужка, хрусталик, реснитчатое тело;

· вспомогательный аппарат — веки, ресницы, слезные железы, глазодвигательные мышцы.

Орган зрения развивается достаточно рано из нескольких источников. Сетчатка и зрительный нерв развиваются из выпячивания стенки переднего мозгового пузыря, которое имеет вид глазных пузырьков. Эти пузырьки путем впячивания превращаются в глазные бокалы. Из наружной стенки глазного бокала развивается пигментный эпителий сетчатки, из внутренней — собственно сетчатка. Края глазного бокала служат для образования гладких мышц радужки (мышцы, суживающие и расширяющие зрачок) и реснитчатого тела. Хрусталик развивается из эктодермы, которая образует вначале утолщение — хрусталиковую плакоду, а затем хрусталиковый пузырек. Хрусталиковый пузырек отпочковывается от остальной эктодермы и постепенно смещается в полость глазного бокала. Сросшаяся над ним эктодерма участвует в образовании переднего эпителия роговицы. Склера, сосудистая оболочка и ее производные (радужная оболочка, реснитчатое тело) развиваются из мезенхимы. Эпителий конъюнктивы глаза, слезные железы развиваются из кожной эктодермы.

Сетчатка состоит из задней (зрительной) и передней (слепой) частей. Слепая часть сетчатки состоит из двух пластов кубического глиального эпителия. Граница между слепой и зрительной частями неровная и называется зубчатым краем.



Зрительная (оптическая) часть имеет сложное слоистое строение, характерное для экранных нервных центров. Основной частью сетчатки является трехчленная нейронная цепь. Она состоит из фоторецепторного, биполярного и ганглионарного нейронов. Тела эти нейронов образуют три ядерных слоя сетчатки (наружный и внутренний зернистые и ганглионарный). Имеются также слои, образованные отростками нейронов, межнейронными связями и глиальными элементамислой палочек и колбочек, наружный и внутренний сетчатые слои, слой нервных волокон, две глиальные пограничные мембраны. Всего в сетчатке насчитывается 10 слоев.

Слой пигментного эпителия находится между базальной пластинкой сосудистой оболочки, с одной стороны, и слоем палочек и колбочек сетчатки, с другой. Пигментоциты, формирующие слой, лежат на базальной мембране. Их основания прилежат к сосудистой оболочке. От вершин клеток отходят отростки в виде "бороды", которые также содержат пигмент меланин, способный мигрировать сюда из тел клеток. На свету количество пигмента увеличивается, и он перемещается в отростки, которые окружают палочки и колбочки фоторецепторных нейронов, глубоко проникая между ними. При этом пигмент поглощает часть света и препятствует перевозбуждению фоторецепторных нейронов. В темноте отростки исчезают, а пигмент перемещается к телу клетки, что способствует большему возбуждению фоторецепторов.

Функции пигментного слоя:

· трофическая функция по отношению к фоторецепторным нейронам, обеспечение диффузии питательных веществ и кислорода из сосудистой оболочки;

· защитная функция — защита палочек и колбочек прежде всего от избыточного светового потока, участие в гематоофтальмическом барьере;

· фагоцитоз и переваривание подвергающихся постоянному разрушению наружных частей палочконесущих нейронов и, следовательно, участие в обновлении их дисков;

· биосинтез ретиналя (составной части зрительного пигмента родопсина) и транспорт его к фоторецепторным нейронам.

Слой палочек и колбочек образован дендритами фоторецепторных нейронов, имеющими форму или палочек, или колбочек. В палочке выделяют наружный и внутренний сегменты. В наружном сегменте находится большое количество сдвоенных поперечных мембран, расположенных в виде стопки плоских мембранных пузырьков. Их называют дисками. В дисках наружного сегмента содержится зрительный пигмент родопсин, состоящий из белка опсина и альдегида витамина А — ретиналя. Под действием энергии света родопсин распадается, что ведет к увеличению проницаемости мембраны клетки для ионов и возникновению электрического потенциала. В темноте происходит регенерация родопсина, сопровождающаяся затратой энергии АТФ. Диски палочек постоянно обновляются. Их новообразование происходит в проксимальных отделах, откуда новообразованные диски смещаются в дистальном направлении, "стареют" фагоцитируются клетками пигментного эпителия. Для новообразования мембран дисков необходим витамин А, при недостатке которого происходит их разрушение, и возникает "куриная слепота" — неспособность видеть в ночное время.

Палочки — рецепторы черно-белого ночного зрения. Их количество около 130 млн. Расположены палочки в периферических отделах сетчатки.

В колбочке строение наружного сегмента несколько отличается от палочки. Во-первых, наружные сегменты состоят не из изолированных дисков, а из полудисков, образованных глубокими инвагинациями цитолеммы, напоминающими гребенку. Во-вторых, они имеют не цилиндрическую, а коническую форму. В-третьих, во внутреннем сегменте имеется эллипсоидлипидное включение, окруженное митохондриями.

В-четвертых, в колбочках полудиски содержат зрительный пигмент йодопсин. Этот пигмент распадается под воздействием красного, синего или зеленого света. В-пятых, мембраны колбочек не подвергаются обновлению. Внутренний сегмент колбочек имеет такое же строение, как и в палочках, отличие заключается в том, что ядро колбочковых клеток более крупное, чем ядро палочковых. Общее число колбочковых нейронов составляет около 7 млн. Они лежат в центре сетчатки. Особенно велико их содержание в желтом пятне - области лучшего видения. Колбочковые клетки реагируют на свет высокой интенсивности, обеспечивая цветное дневное зрение.

Механизм фоторецепции связан с распадом молекул родопсина и йодопсина под воздействием световой энергии. Это запускает цепь реакций, изменяющих проницаемость мембран для ионов и вызывающих формирование нервного импульса.

Наружная глиальная мембрана находится между слоем палочек и колбочек и наружным зернистым слоем. Образована отростками глиальных клеток-волокон.

Наружный зернистый (ядерный) слой образован телами и ядрами фоторецепторных нейронов. Это наиболее выраженный из трех ядерных слоев сетчатки.

Наружный сетчатый слой сформирован аксонами фоторецепторных нейронов, дендритами биполярных нейронов и синапсами между ними.

Внутренний зернистый слой образован телами нескольких нейронов: биполярных, горизонтальных, амакриновых, интерплексиформных, а также ядрами глиальных клеток-волокон Мюллера. Дендриты биполярных нейронов образуют синапсы с аксонами фоторецепторных нейронов в наружном сетчатом слое, а их аксоны формируют синапсы с дендритами ганглионарных нейронов во внутреннем сетчатом слое. Горизонтальные нейроны имеют множество горизонтально идущих дендритов, которые образуют синапсы с несколькими фоторецепторными нейронами. Аксон горизонтального нейрона формирует синапс на границе между биполярной и фоторецепторной клетками. Через такие синапсы может проходить торможение, что увеличивает контрастность изображения. Амакриновые нейроны не имеют дендритов, их заменяет тело клетки, выполняющее роль синаптической поверхности. Аксон ветвится и образует связи с несколькими ганглионарными, а также биполярными нейронами. Функция амакриновых нейронов та же, что и у горизонтальных клеток. Интерплексиформные нейроны выполняют ассоциативную функцию. Глиальные клетки-волокна Мюллера имеют протяженные отростки, которые идут вверх и вниз, соединяясь между собой на уровне 2 и 3 слоями. Эти соединения формируют наружную глиальную пограничную мембрану. Внутренняя глиальная мембрана образована основаниями клеток-волокон Мюллера и их базальной мембраной. Она находится за слоем нервных волокон, отделяя его от стекловидного тела. От основных отростков клеток Мюллера отходит многочисленные вторичные отростки, которые окружают тела нейронов сетчатки и их синапсы, выполняя опорную функцию. Кроме того, отростки окружают стенки ретинальных капилляров, участвуя в формировании гематоретинального барьера. Несмотря на такое разнообразие клеток его формирующих, внутренний ядерный слой заметно тоньше, чем наружный.

Внутренний сетчатый слой образован аксонами биполярных нейронов и дендритами ганглионарных нейронов. Здесь же находятся синапсы между этими отростками.

Ганглионарный слой образован ядрами ганглионарных нейронов. Эти нейроны самые крупные в сетчатке, но их меньше всего. В результате убывания клеток от наружных слоев к внутренним происходит конвергенция нервных импульсов в сетчатке. Так, на одном биполярном нейроне образуются синапсы нескольких фоторецепторных клеток. В свою очередь, несколько биполярных клеток контактируют с одним ганглионарным нейроном. В результате число нервных волокон в зрительном нерве примерно в 100 раз меньше числа фоторецепторных нейронов. Конвергенция отсутствует в области желтого пятна, где каждому фоторецепторному соответствует отдельный биполярный нейрон.

Слой нервных волокон образован аксонами ганглионарных нейронов. Нервные волокна сетчатки находятся в слепом пятне, окружаются миелиновой оболочкой, проходят через всю сетчатку и формируют зрительный нерв, в котором волокна перекрещиваются и идут в таламус.

Внутренняя глиальная пограничная мембрана находится ниже слоя нервных волокон. Образована соединением оснований и отростков клеток-волокон Мюллера и их базальной мембраной.

6. Диоптрический аппарат глаза

Роговица — прозрачная часть наружной фиброзной оболочки глаза склеры. Она состоит из пяти слоев:

· наружный эпителий является многослойным плоским неороговевающим эпителием, который состоит из трех слоев — базального, шиповатого и слоя плоских клеток. В эпителии содержится большое количество свободных нервных окончаний, обусловливающих высокую чувствительность роговицы. Передний эпителий роговицы в области лимба переходит в эпителий конъюнктивы глаза;

· передняя пограничная (боуменова) мембрана. Образована упорядочено, в виде трехмерной сети, расположенными коллагеновыми волокнами. Играет роль базальной мембраны;

· собственное вещество роговицы. Образовано оформленной плотной волокнистой соединительной тканью. Оно состоит из параллельно лежащих коллагеновых волокон, основного вещества и расположенных между волокнами фиброцитов. Собственное вещество роговицы продолжается в склеруплотную непрозрачную оболочку. Место перехода называется лимбом. Здесь содержится большое количество сосудов, из которых питаются наружные отделы роговицы. Питание ее центральных отделов происходит за счет веществ, содержащихся в жидкости передней камеры глаза;

· задняя пограничная (десцеметова) мембрана имеет такое же строение, как и наружная мембрана;

· задний эпителий — однослойный плоский эпителий (часто называется эндотелием).

В роговице нет собственных сосудов, питание идет за счет диффузии веществ из передней камеры глаза и кровеносных сосудов лимба. При воспалении сосуды из лимба могут проникать в собственное вещество роговицы, что создает ее непрозрачность (катаракта). Роговица богато иннервируется, нервы лежат не только в собственном веществе, но и в переднем эпителии.

Факторы, обеспечивающие прозрачность роговицы:

· идеально ровная поверхность переднего эпителия, при травмах, образовании язв роговицы эта ровная поверхность нарушается, что ведет к появлению непрозрачных участков;

· отсутствие в собственном веществе сосудов, при воспалении они могут врастать в него из лимба, что нарушает прозрачность;

· низкое содержание в собственном веществе роговицы воды, при воспалениях роговицы (кератитах) происходит увеличение содержания воды, и прозрачность роговицы теряется (катаракта);

· высокая степень упорядоченности расположения коллагеновых волокон в пограничных мембранах и собственном веществе роговицы.

Хрусталик развивается из материала эктодермы, превращающейся под влиянием глазного бокала в хрусталиковый пузырек. Этот пузырек отделяется от эктодермы и погружается в полость глазного бокала. Передняя стенка хрусталикового пузырька состоит из однослойного кубического эпителия, а заднюю стенку образуют удлиненные клетки, которые называются хрусталиковыми волокнами. По мере их роста полость пузырька исчезает. В центре хрусталика из первичных хрусталиковых волокон образуется ядро хрусталика. В дальнейшем за счет пролиферации клеток, находящихся в экваториальной части, образуются вторичные хрусталиковые волокна.

Хрусталик снаружи покрыт капсулой — утолщенной базальной мембраной. Капсула содержит гликопротеины и сеть микрофиламентов, обеспечивающие эластичность хрусталика. На передней поверхности хрусталика под его капсулой сохраняется однослойный эпителий. На экваторе его клетки способны к митотическому делению (ростковая зона). После его завершения эти клетки формируют новые хрусталиковые волокна. Клетки заднего эпителия также формируют хрусталиковые волокна. Цитоплазма хрусталиковых волокон содержит прозрачное вещество кристаллин. В центре хрусталиковые волокна уплотняются, теряют ядра, наслаиваются друг на друга и формируют ядро хрусталика.

Внутри хрусталика отсутствуют нервы и кровеносные сосуды, что обеспечивает его прозрачность. Внутри глаза хрусталик поддерживается с помощью нитей цилиарной (цинновой) связки, которая прикрепляется к капсуле. Изменение степени натяжения нитей меняет кривизну хрусталика, при этом изменяется и его преломляющая способность. Благодаря этому возможна аккомодация - способность четкого видения различно удаленных предметов. У молодых людей хрусталик обладает высокой эластичностью, которая постепенно теряется с возрастом. Это ведет к нарушению восприятия близко расположенных объектов (пресбиопия). При старении также может нарушаться прозрачность хрусталика и его капсулы — возникает хрусталиковая катаракта.

Стекловидное тело — это основная преломляющая среда глаза. Помимо этой наиболее важной функции стекловидное тело участвует в обменных процессах сетчатки, а также фиксирует хрусталик и препятствует (в норме) отслоению сетчатки от пигментного эпителия. Оно представлено межклеточным веществом (99 % воды и белок витреин), которое преобладает, и единичными клетками (фиброциты, макрофаги и лимфоциты).

7. Аккомодационный аппарат глаза

Сосудистая оболочка состоит из трех частей: собственно сосудистой оболочки, цилиарного тела и радужки. Главная функция собственно сосудистой оболочки — питание сетчатки. Она также участвует в регуляции внутриглазного давления. Пигмент, содержащийся в этой оболочке, поглощает избыток света. В результате сокращения цилиарной мышцы (части сосудистой оболочки) может изменяться длина оптической оси глаза, таким образом сосудистая оболочка участвует в аккомодации.

Радужная оболочка лежит перед хрусталиком. Имеет вид пластинки, в центре которой находится зрачок. В радужке выделяют 5 слоев:

· передний эпителий — продолжение заднего эпителия роговицы;

· наружный пограничный слой содержит рыхлую волокнистую неоформленную соединительную ткань с фибробластами и меланоцитами;

· сосудистый слой также образован рыхлой волокнистой неоформленной соединительной тканью, содержит сосуды, меланоциты;

· внутренний пограничный слой имеет такое же строение, как и наружный пограничный слой;

· внутренний эпителий или пигментный слой.

В радужке содержатся две мышцы: суживающая и расширяющая зрачок. Эти мышцы образованы мионевральной тканью и находятся: первая — в околозрачковой зоне сосудистого слоя, вторая — в сосудистом и частично внутреннем пограничном слоях. Мышца, суживающая зрачок, иннервируется парасимпатической нервной системой, а мышца, расширяющая зрачок — симпатической нервной системой.

В месте прикрепления передней поверхности радужки к склере и реснитчатому телу (угол передней камеры глаза) находятся трабекулы, которые составляют гребенчатую связку. Между трабекулами имеются фонтановы пространства, через них осуществляется отток влаги из передней камеры глаза в шлеммов канал, который в свою очередь сообщается с венозным синусом. Венозный синус располагается циркулярно вокруг шлеммова канала. Шлеммов канал и венозный синус обеспечивают отток внутриглазной жидкости в венозную систему глаза. Сужение просвета канала при патологии ведет к повышению внутриглазного давления, что в тяжелых случаях вызывает гибель нейронов сетчатки и слепоту.

Реснитчатое тело состоит из двух частей: внутренняя — цилиарная корона; наружная — цилиарное кольцо. Основу цилиарного тела составляет цилиарная мышца, образованная гладкой мышечной тканью. Ее пучки имеют циркулярное направление во внутренних отделах и радиальное в наружных. От поверхности цилиарного тела отходят цилиарные отростки, к которым прикрепляются нити цинновой связки. Расслабление цилиарной мышцы вызывает натяжении цинновой связки и уплощение хрусталика. Сокращение мышцы, наоборот, вызывает расслабление цинновой связки, и хрусталик в силу своей упругости становится более выпуклым, его преломляющая способность увеличивается. Покрывающий цилиарные отростки двуслойный кубический эпителий образован внутренним слоем непигментированных и наружным слоем пигментированных клеток. Клетки каждого слоя имеют собственную базальную мембрану. Этот эпителий выполняет две основные функции:

· вырабатывает внутриглазную жидкость;

· участвует в формировании барьера между кровью и внутриглазной жидкостью.

Нейронный состав зрительного анализатора:

· 1 — нейрон — фоторецепторный;

· 2 — нейрон — биполярный;

· 3 — нейрон — ганглионарный;

· тело 4 нейрона расположено в зрительном бугре, аксон этого нейрона идет к нейронам зрительной зоны коры больших полушарий.

Гемоофтальмический барьер — это барьер между кровью в кровеносных капиллярах сетчатки, нейроцитами сетчатки и волокнами зрительного нерва. Гемоофтальмический барьер находится в трех различных участках:

· между сосудами сосудистой оболочки и фоторецепторными нейронами. В состав данного барьера входят эндотелий и базальная мембрана капилляров сосудистой оболочки, соединительная ткань базальной пластинки, базальная мембрана пигментного эпителия, пигментный эпителий;

· внутри сетчатки, этот барьер образован эндотелием внутрисетчаточных гемокапилляров и их базальной мембраной, наружной глиальной пограничной мембраной, образованной отростками астроцитарной глии сетчатки, отростками клеток-волокон Мюллера, окружающими как гемокапилляры, так и тела нейронов сетчатки.

· в зрительном нерве, он образован эндотелием и базальной мембраной капилляров нерва.

ЛЕКЦИЯ 15. Сердечно-сосудистая система

1. Функции и развитие сердечно-сосудистой системы

2. Строение сердца

3. Строение артерий

4. Строение вен

5. Микроциркуляторное русло

6. Лимфатические сосуды

1. Сердечно-сосудистая система образована сердцем, кровеносными и лимфатическими сосудами.

Функции сердечно-сосудистой системы:

· транспортная — обеспечение циркуляции крови и лимфы в организме, транспорт их к органам и от органов. Эта фундаментальная функция складывается из трофической (доставка к органам, тканям и клеткам питательных веществ), дыхательной (транспорт кислорода и углекислого газа) и экскреторная (транспорт конечных продуктов обмена веществ к органам выделения) функции;

· интегративная функция — объединение органов и систем органов в единый организм;

· регуляторная функция, наряду с нервной, эндокринной и иммунной системами сердечно-сосудистая система относится к числу регуляторных систем организма. Она способна регулировать функции органов, тканей и клеток путем доставки к ним медиаторов, биологически активных веществ, гормонов и других, а также путем изменения кровоснабжения;

· сердечно-сосудистая система участвует в иммунных, воспалительных и других общепатологических процессах (метастазирование злокачественных опухолей и других).

Развитие сердечно-сосудистой системы

Сосуды развиваются из мезенхимы. Различают первичный и вторичный ангиогенез. Первичный ангиогенез или васкулогенез, представляет собой процесс непосредственного, первоначального образования сосудистой стенки из мезенхимы. Вторичный ангиогенез — формирование сосудов путем их отрастания от уже имеющихся сосудистых структур.

Первичный ангиогенез

Кровеносные сосуды образуются в стенке желточного мешка на

3-ей неделе эмбриогенеза под индуктивным влиянием входящей в его состав энтодермы. Сначала из мезенхимы формируются кровяные островки. Клетки островков дифференцируются в двух направлениях:

· гематогенная линия дает начало клеткам крови;

· ангиогенная линия дает начало первичным эндотелиальным клеткам, которые соединяются друг с другом и образуют стенки кровеносных сосудов.

В теле зародыша кровеносные сосуды развиваются позднее (во второй половине третьей недели) из мезенхимы, клетки которой превращаются в эндотелиоциты. В конце третьей недели первичные кровеносные сосуды желточного мешка соединяются с кровеносными сосудами тела зародыша. После начала циркуляции крови по сосудам их строение усложняется, кроме эндотелия в стенке образуются оболочки, состоящие из мышечных и соединительнотканных элементов.

Вторичный ангиогенез представляет собой рост новых сосудов от уже образованных. Он делится на эмбриональный и постэмбриональный. После того, как в результате первичного ангиогенеза образовался эндотелий, дальнейшее формирование сосудов идет только за счет вторичного ангиогенеза, то есть путем отрастания от уже существующих сосудов.

Особенности строения и функционирования разных сосудов зависит от условий гемодинамики в данной области тела человека, например: уровень артериального давления, скорость кровотока и так далее.

Сердце развивается из двух источников: эндокард образуется из мезенхимы и вначале имеет вид двух сосудов — мезенхимных трубок, которые в дальнейшем сливаются с образованием эндокарда. Миокард и мезотелий эпикарда развиваются из миоэпикардиальной пластинки — части висцерального листка спланхнотома. Клетки этой пластинки дифференцируются в двух направлениях: зачаток миокарда и зачаток мезотелия эпикарда. Зачаток занимает внутреннее положение, его клетки превращаются в кардиомиобласты, способные к делению. В дальнейшем они постепенно дифференцируются в кардиомиоциты трех типов: сократительные, проводящие и секреторные. Из зачатка мезотелия (мезотелиобластов) развивается мезотелий эпикарда. Из мезенхимы образуется рыхлая волокнистая неоформленная соединительная ткань собственной пластинки эпикарда. Две части — мезодермальная (миокарда и эпикард) и мезенхимная (эндокард)соединяются вместе, образуя сердце, состоящее из трех оболочек.

2. Сердце — это своеобразный насос ритмического действия. Сердце является центральным органом крово- и лимфообращения. В строении его имеются черты как слоистого органа (имеет три оболочки), так и паренхиматозного органа: в миокарде можно выделить строму и паренхиму.

Функции сердца:

· насосная функция — постоянно сокращаясь, поддерживает постоянный уровень артериального давления;

· эндокринная функция — выработка натрийуретического фактора;

· информационная функция — сердце кодирует информацию в виде параметров артериального давления, скорости кровотока и передает ее в ткани, изменяя обмен веществ.

Эндокард состоит из четырех слоев: эндотелиального, субэндотелиального, мышечно-эластического, наружного соединительнотканного. Эпителиальный слой лежит на базальной мембране и представлен однослойным плоским эпителием. Субэндотелиальный слой образован рыхлой волокнистой неоформленной соединительной тканью. Эти два слоя являются аналогом внутренней оболочки кровеносного сосуда. Мышечно-эластический слой образован гладкими миоцитами и сетью эластических волокон, аналог средней оболочки сосудов. Наружный соединительнотканный слой образован рыхлой волокнистой неоформленной соединительной тканью и является аналогом наружной оболочки сосуда. Он связывает эндокард с миокардом и продолжается в его строму.

Эндокард образует дубликатуры — клапаны сердца — плотные пластинки волокнистой соединительной ткани с небольшим содержанием клеток, покрытые эндотелием. Предсердная сторона клапана гладкая, тогда как желудочковая — неровная, имеет выросты, к которым прикрепляются сухожильные нити. Кровеносные сосуды в эндокарде находятся только в наружном соединительнотканном слое, поэтому его питание осуществляется в основном путем диффузии веществ из крови, находящейся как в полости сердца, так и в сосудах наружного слоя.

Миокард является самой мощной оболочкой сердца, он образован сердечной мышечной тканью, элементами которой являются клетки кардиомиоциты. Совокупность кардиомиоцитов можно рассматривать как паренхиму миокарда. Строма представлена прослойками рыхлой волокнистой неоформленной соединительной тканью, которые в норме выражены слабо.

Кардиомиоциты делятся на три вида:

· основную массу миокарда составляют рабочие кардиомиоциты, они имеют прямоугольную форму и соединяются друг с другами с помощью специальных контактов — вставочных дисков. За счет этого они образуют функциональный синтиций;

· проводящие или атипичные кардиомиоциты формируют проводящую систему сердца, которая обеспечивает ритмическое координированное сокращение его различных отделов. Эти клетки, являются генетически и структурно мышечными, в функциональном отношении напоминают нервную ткань, так как способны к формированию и быстрому проведению электрических импульсов.

Различают три вида проводящих кардиомиоцитов:

· Р-клетки (пейсмекерные клетки) образуют синоаурикулярный узел. Они отличаются от рабочих кардиомиоцитов тем, что способны к спонтанной деполяризации и образованию электрического импульса. Волна деполяризации передается чрез нексусы типичным кардиомиоцитам предсердия, которые сокращаются. Кроме того, возбуждение передается на промежуточные атипичные кардиомиоциты предсердно—желудочкового узла. Генерация импульсов Р-клетками происходит с частотой 60—80 в 1 мин;

· промежуточные (переходные) кардиомиоциты предсердно-желудочкового узла передаю возбуждение на рабочие кардиомиоциты, а также на третий вид атипичных кардиомиоцитов — клетки-волокна Пуркинье. Переходные кардиомиоциты также способны самостоятельно генерировать электрические импульсы, однако их частота ниже, чем частота импульсов, генерируемых пейсмекерными клетками, и оставляет 30—40 в мин;

· клетки-волокна — третий тип атипичных кардиомиоцитов, из которых построены пучок Гиса и волокна Пуркинье. Основная функция клеток-волоконпередача возбуждения от промежуточных атипичных кардиомиоцитов рабочим кардиомиоцитам желудочка. Кроме того, эти клетки способны самостоятельно генерировать электрические импульсы с частотой 20 и менее в 1 минуту;

· секреторные кардиомиоциты располагаются в предсердиях, основной функцией этих клеток является синтез натрийуретического гормона. Он выделяется в кровь тогда, когда в предсердие поступает большое количество крови, то есть при угрозе повышения артериального давления. Выделившись в кровь, этот гормон действует на канальцы почек, препятствуя обратной реабсорбции натрия в кровь из первичной мочи. При этом в почках вместе с натрием из организма выделяется вода, что ведет к уменьшению объема циркулирующей крови и падению артериального давления.


<== предыдущая страница | следующая страница ==>
Темы по биологии. 12 страница | Темы по биологии. 14 страница

Дата добавления: 2014-02-26; просмотров: 172; Нарушение авторских прав


lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.017 сек.