Студопедия

Главная страница Случайная лекция

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика






ВАКЦИНАЦИЯ

Вакцинация, несомненно, самое известное и наиболее успешное применение иммунологических принципов в ветеринарии. Первая вакцина была названа так по болезни крупного рогатого скота - vaccinia (коровья оспа), вызываемой, как выяснилось впоследствии, вирусом. Два столетия назад ее применил английский врач Э.Дженнер. Это стало первой научно продуманной попыткой предотвратить инфекционное заболевание человека (натуральную оспу), причем автор метода ничего не знал о вирусах (или о любых других микробах) и об иммунитете.

Лишь столетие спустя Л. Пастером был сформулирован фундаментальный принцип вакцинации: для создания напряженного иммунитета против высоковирулентных микроорганизмов можно применять препараты из тех же микро­бов, но с ослабленной путем определенного воздействия вирулентностью. Используя в соответствии с этим высушенный спинной мозг кролика, зараженного вирусом бешенства, и прогретые культуры бацилл сибирской язвы, Л.Пастер создал по сути дела прототипы современных вакцин. В то же время созданная Э.Дженнером вакцина животного происхождения, содержащая вирус коровьей оспы (гетерологичная), не получила впоследствии какого-либо продолжения.

Л. Пастер не знал ничего о функции лимфоцитов или сущности иммунологической памяти; их открытие заставило себя ждать еще полстолетия. Тогда, наконец, с появлением клонально-селекционной теории Ф. Бернета (1957) и данных о Т/В-дифференциации лимфоцитов (1965) стал понятен ключевой механизм вакцинации: содержащийся в вакцине антиген должен вызвать клональную экспансию специфических Т- и/или В-клеток, оставив после себя популяцию клеток иммунологической памяти. При следующей встрече с тем же антигеном именно они способны дать вторичный ответ, который обычно быстрее и эффективнее первичного. Часто первичный ответ слишком слаб, чтобы сдержать развитие опасной инфекции.

Таким образом, вакцинация приводит к формированию приобретенного иммунитета, а искусство создания вакцин заключается в разработке таких антигенных препаратов, которые безвредны для организма, вызывают нужную форму иммунного ответа и, кроме того, доступны по стоимости.

Благодаря вакцинации достигнуты успехи в предупреждении многих инфекционных заболеваний, но существуют и болезни, для защиты от которых вакцин еще не создано.

Антигенные препараты, используемые как вакцины.Выбор типа антигенного препарата для применения в качестве вакцины зависит от многих факторов. В общем, чем больше антигенов данного микроба останется в вакцине, тем лучше, и живые микроорганизмы, как правило, эффективнее убитых. Исключение составляют бо­лезни, патогенез которых определяется действием токсина. В этом случае основой вакцины может служить сам токсин. Еще одно исключение — это вакцины, в которых нужные микробные антигены экспрессируются клетками других микробов, используемых в качестве вектора.

Для приготовления живых вакцин могут использоваться как штаммы дикого типа, так и аттенуированные, или ослабленные, штаммы микробов.

Живые микроорганизмы штаммов дикого типа редко используются для вакцин. За исключением вируса коровьей оспы, ни один полностью нативный (циркулирующий в природе) микроорганизм не служил когда-либо для приготовления используемых на практике вакцин. Одно время внимание исследователей привлекала иммунизация микобактериями - возбудителями мышиного туберкулеза, как средство противотуберкулезной защиты. На Ближнем и Среднем Востоке, а также в России для созда­ния иммунитета к кожному лейшманиозу делают прививки живой культуры Leishmania tropica major, выделенной от больного с легким течением болезни. Вполне вероятно, что в будущем будет получена еще одна хорошая гетерологичная (как у Дженнера) вакцина, но при этом возможны серьезные проблемы, связанные с требовани­ем безвредности.



Наиболее эффективны живые ослабленные вакцины. При разработке вакцин самой плодотворной оказалась стратегия ослабления (аттенуция) вирулентности возбудителей, вызывающих болезни, при сохранении нужных антигенов. Первый успех на этом пути был достигнут Кальметтом и Гереном с одним из штаммов туберку­лезных бактерий бычьего вида (Mycobacteriun bovis), который за 13 лет (1908-1921) пересевов превратился в намного менее вирулентную форму, известную теперь как BCG (bacille Calmette—Guerin) и в некоторой степени эффективную в качестве противотуберкулезной вакцины. По-настоящему удачными оказались работы по аттенуации вирусов. Началом их стало получение путем пассирования в мышах и куриных эмбрионах ослабленного штамма 17D вируса желтой лихорадки (1937). В дальнейшем принципиально сходный подход позволил создать вакцины против полиомиелита, кори, эпидемического паротита и краснухи.Об эффективности этих вакцин свидетельствует резкое снижение заболеваемости соответствующими инфекциями на протяжении двух-трех десятилетий.

Аттенуация может быть результатом мутаций. В чем суть изменений, приводящий к аттенуации? Впервые ослабленные микробы были получены в результате серии случайных мутаций, индуцированными неблагоприятными условиями роста; их удалось выделить благодаря постоянной перепроверке и отбору по признаку утраты вирулентности при сохранении исходного антигенного состава. Эта длительная кропотливая работа была остроумно названна генетической рулеткой.

С появлением современной технологии получения рекомбинантных ДНК стало очевидным, что как вирусные, так и бактериальные аттенуированные вакцины должны создаваться на основе направленно точечных, а не случайных мутаций.

Убитые вакцины - это сохранившие нативность антигенов, но нежизнеспособные микроорганизмы. Эти вакцины создают по принципу упомянутых выше убитых вакцин Л.Пастера. Некоторые из убитых вакцин высокоэффективны (антирабичекая вакцина), эффективность же других невысока (сальмонеллезная вакцина) или спорна (чумная вакцина). Применение некоторых вакцин встречает возражения из-за их токсичности (цельноклеточная коклюшная вакцина).Можно надеяться, что некоторые из них будут заменены, как более эффективными, вакцинами на основе ослабленных возбудите­лей, а также полученных методом генной инженерии.

Инактивированные токсины и анатоксины - наиболее удачные из бактериальных вакцин. Самыми эффективными среди всех бактериальных вакцин считаются столбнячная и дифтерийная вакцины, приготовленные из инактивированных экзотоксинов. Тот же принцип может, как оказалось, быть использован для приготовления вакцин и против ряда других инфекционных болезней.

Столбнячный анатоксин может служить «носителем» в составе других вакцин.Столбнячный анатоксин, кроме применения в качестве вакцины против столбняка, используется еще и как «носитель» в вакцинах, состоящих из коротких пептидов, которые иначе лишены иммуногенности. Такой способ эффективен благодаря тому, что население в большинстве вакцинировано против столбняка и обладает Т-клетками иммунологической памяти, распознающими токсин. Однако целесообразно использовать в качестве носителя белок того же микроба, против которого направлена конструируемая вакцина (в частности, пневмококковая, малярийная и т. д.).

Безвредными и эффективными вакцинами служат поверхностные антигены и фрагменты микробных клеток

Иммунная система (главным образом В-клетки и антитела) распознает прежде всего поверхностные антигены большинства микроорганизмов и отвечает на них. Они и служат безвредной и эффективной вакциной в тех случаях, когда вторичное образование антител способно сдерживать инфекцию. Наиболее удачными оказались вакцины против инкапсулированных бактерий, капсульные полисахариды которых удается получить в препаративных количествах.

Низкомолекулярные антигены можно получать путем химического синтеза или молекулярного клонирования. Если установлено, что защиту обеспечивает небольшой пептид (не частый случай), удобнее, возможно, получать его путем синтеза или клонирования в подходящем векторе экспрессии. Пример успешной реализации этого подхода — получение HBs-антигена, клонированного в клетках дрожжей. Изготовленная таким способом вакцина вытеснила теперь HBs-вакцину первого поколения, которую приходилось готовить трудоемким методом выделения HBs-антигена из крови носителей вируса и последующей очистки; при новом способе снизилась и стоимость вакцины.

Привлекательность молекулярного клонирования заключается и в том, что в продукт можно ввести дополнительные последовательности, на­пример необходимые В- и Т-клеточные эпитопы, скомбинированные различным образом для оптимизации иммунного ответа. Т-клетки распознают линейные аминокислотные последовательности, тогда как В-клетки отвечают на трехмерную конфигурацию эпитопов антигена. Поэтому пептиды хорошо функционируют в качестве Т-клеточных эпитопов, но не способны имитировать структурированные В-клеточные эпитопы. Даже в том случае, если В-клеточная детерминанта имеет линейную конфигурацию, антитела, полученные к свободному гибкому пептиду, не связываются с ним так же оптималь­но, как с идентичной последовательностью в составе нативного белка, где она имеет более жесткую структуру.

Вакцины будущего - это микробные гены в комбинации с векторами для экспрессии антигена in situ.

Дальнейшее развитие подхода с применением клонирования генов предполагает введение нужного гена в такой вектор, который способен после инъекции в организм обеспечивать репликацию и экспрессию с образованием большого количества антигена in situ. Ранее на роль вектора выдвигали вирус коровьей оспы (несмотря на изредка проявляемую им токсичность), однако его использованию препятствует то, что многие люди уже привиты против оспы и у них этот вирус будет слишком быстро выводиться из организма. В качестве альтернативы предлагались почти все из имеющихся аттенуированных вирусных вакцин.

Другой подход к созданию вакцины заключается в использовании в роли векторов аттенуированных бактерий, и естественным кандидатом на нее представляется вакцина БЦЖ (от франц. BCG — bacille Calmette—Guerin), поскольку геном микобактерий по расчетам достаточно велик для включения генов любых других микробов, из которых необходимо создать вакцину. Имеется также ряд мутантных штаммов сальмонелл, способных при пероральном введении проиммунизировать лимфоидную ткань кишечника, прежде чем будут элиминированы. Эти бактерии идеально подходят как векторная вакцина для индукции местного иммунитета в кишечнике — очень важная задача, если учесть, что диарейные заболевания составляют главную причину детской смертности на земном шаре. Еще одно преимущество аттенуированных микроорганизмов как векторов заключается в том, что их могут поглощать макрофаги, вызывая в результате системный иммунный ответ вследствии миграции в другие части тела.

Самым новым направлением в этой области стала разработка метода вакцинирования чистой ДНК, в последовательность оснований которой включен подходящий промотор. Поразительным образом такая вакцина создает превосходный иммунитет, как гуморальный, так и клеточный, не вызывая при этом толерантности, которую можно было бы ожидать в случае потенциально неограниченного источника чужеродного антигена. Это направление, привлекающее огромный интерес, быстро развивается, и уже вскоре можно ожидать результатов испытаний «ДНКовой» вакцины.

Когда нативный антиген непригоден для иммунизации, можно использовать антиидиотипические вакцины. Это единственный тип вакцин, созданный исключительно на основе теоретических представлений. Идея состоит в получении большого количества антиидиотипических моноклональных антител (анти-Id) против V-области (идиотипа) иммуноглобулина, заведомо обладающего защитной активностью. Отобранные соответствующим образом антитела анти-Id будут по про­странственной конфигурации подобны эпитопам исходного иммунизирующего антигена и пригодны для использования с целью активной иммунизации вместо него.Такая стратегия, хотя и воспринимается нередко скептически, как плод «умозрительной иммунологии», все же может оказаться действительно эффективной в тех случаях, когда сам по себе нативный антиген не­пригоден, т. е. не обладает иммуногенностью, как, например, некоторые бактериальные полисахариды или липид А из бактериального эндотоксина (липополисахарида, ЛПС). При этом моноклональные антитела имеют то преимущество, что они как белки должны индуцировать иммунологическую память, которой полисахариды и липиды обычно не вызывают.


<== предыдущая страница | следующая страница ==>
Организация работы в газоопасных местах | Эффективность вакцин

Дата добавления: 2014-02-26; просмотров: 257; Нарушение авторских прав


lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.004 сек.