Студопедия

Главная страница Случайная лекция

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика






Движении (жидкости)

Читайте также:
  1. III. Революционно-демократическое направление в русском общественном движении.
  2. Категория Бытие в историческом движении
  3. Конвективная теплоотдача при вынужденном движении текучей среды в трубах и каналах
  4. Конвективная теплоотдача при свободном движении текучей среды
  5. Механика – наука о движении и равновесии тел.
  6. Повороты в движении
  7. Порядок проведения проверок бдительности КЛУБ-У при движении локомотива (МВПС).
  8. При передвижении экскаватора
  9. РАСЧЕТ ЗНАЧЕНИЙ РАВНОДЕЙСТВУЮЩИХ СИЛ, ДЕЙСТВУЮЩИХ НА ПОЕЗД ПРИ ЕГО ДВИЖЕНИИ

Истечение жидкости из отверстия в тонкой стенке при установившемся

Отверстие в тонкой стенке

Одной из типичных задач гидравлики, которую можно назвать задачей прикладного

характера, является изучение процессов, связанных с истечением жидкости из отверстия в тонкой стенке и через насадки. При таком движении вся потенциальная энергия жидкости находящейся в ёмкости (резервуаре) в конечном итоге расходуется на кинетическую энер­гию струи, вытекающей в газообразную среду, находящуюся под атмосферным давлением или (в отдельных случаях) в жидкую среду при определённом давлении. Отверстие будет считаться малым, если его размеры несоизмеримо малы по сравнению с размером свобод­ной поверхности в резервуаре и величиной напора. Стенка называется тонкой, если вели­чиной гидравлических сопротивлений по длине канала в тонкой стенке можно пренеб­речь. В таком случае частицы жидкости со всех сторон по криволинейным траекториям движутся с некоторым ускорением к отверстию. Дойдя до отверстия, струя жидкости от­рывается от стенки и испытывает преобразования уже за пределами отверстия.

Истечение жидкости в газовую среду при атмосферном давлении. При истечении из

отверстия в тонкой стенке криволи­нейные траектории частиц жидкости сохраняют свою форму и за пределами отверстия, т.е. после выхода из отвер­стия сечение струи уменьшается и дос­тигает минимальных значений на рас­стоянии равном (d - диаметр отверстия). Таким образом, в сечении В - В будет находиться как назы­ваемое сжатое сечение струи жидкости. Отношение площади

чения струи к площади отверстия называется коэффсщииитоживинфиясфэ&мзвтачаетр^ивсек

гда:

где: s - площадь отверстия,

зсж - площадь сжатого сечения струи, s - коэффициент сжатия струи.

Запишем уравнение Бернулли для двух сечений А -А и В -В. В связи с тем, что от­верстия в стенке является малым сечение В -В можно считать «горизонтальным» (ввиду малости отверстия), проходящим через центр тяжести сжатого сечения струи.

i. *"*

Поскольку величина скоростного напора на свободной поверхности жидкости (сече­ние А - А) мала из-за малости скорости, то её величиной можно пренебречь. В данном случае истечение жидкости происходит в атмосферу, следовательно р{ - р0. Тогда:

т г

F> f

Поскольку в тонкой стенке потери напора по длине бесконечно малы, то

где'- коэффициент потерь напора в тонкой стенке Следовательно, скорость в сжатом сечении струи будет равна:

Первый сомножитель в равенстве носит название коэффициента скорости'

Определим расход жидкости при её истечении из отверстия (заметим, что скорость истечения жидкости у нас относится к площади сжатого живого сечения струи):

где: - называется коэффициентом расхода.

При изучении процесса истечения жидкости предполага­лось, что ближайшие стенки и дно сосуда находятся на достаточ­но большом удалении от отверстия: , т.е. не ближе тройного расстояния от направляющих стенок. В этом случае все линии тока имеют одинаковую кривизну, и такое сжатие струи

называется совершенным сжатием. В иных случаях близко расположенные стенки явля­ются для струи направляющими элементами, и её сжатие будет несовершенным (не оди-



наковым со всех сторон). В тех случаях, когда отверстие непосредственно примыкает к одной из сторон отверстия (сечение отверстия не круглое), сжатие струи будет неполным. При неполном и несовершенном сжатии струи наблюдается некоторое увеличение коэффициента расхода. При полном совершенном сжатии струи коэффициент сжатия дос­тигает 0,60 - 0,64. Величины коэффициентов сжатия струи, коэффициента расхода зависят

от числа Рейнольдса (см. рисунок), причём коэффициенты сжатия и скорости в разных направлениях: с возрастанием числа Рей­нольдса коэффициент скорости увеличивает­ся, а коэффициент сжатия струи убывает. В результате этого коэффициент расхода оста­ётся практически неизменным (исключением являются потоки жидкости с весьма малыми числами Рейнольдса).

Величины коэффициента расхода измеряются простым замером фактического расхо­да жидкости через отверстие и сопоставлением его с теоретически вычисленным значени­ем.

Коэффициент сжатия струи измеряется путём непосредственного определения сжа­того сечения струи, коэффициент скорости - по траектории струи.

Истечение жидкости через затопленное отверстие. Истечение через затопленное от­верстие в тонкой стенке, т.е. под уровень жидкости ничем существенным не отличается от истечения в атмосферу.

Пусть в резервуаре имеется перегородка с отверстием, уровни жидкости находятся

на отметкахиотноси­тельно плоскости сравнения, проходящей через центр тя­жести отверстия. Запишем уравнение Бернулли для свободных поверхностей жидкости (сечение А - А и сечение В - В относительно плоскости сравнения О - О).

Потери напора состоят из двух частей: потеря напора при истечении из отверстия в тонкой стенке (как при истечении в атмосферу):

и потеря на внезапное расширение струи от сжатого сечения до сечения резервуара:

р *

Подставив полученные выражения для видов потерь в предыдущее уравнение, полу­чим:

В данном случае действующим напором является разность уровней свободных по­верхностей жидкости z. Скорость истечения будет равна:

j * * *

Обозначив: получим выражение для расхода жидкости1

•>


<== предыдущая страница | следующая страница ==>
Кавитационные режимы движения жидкости | Истечение жидкости через насадки

Дата добавления: 2014-02-26; просмотров: 270; Нарушение авторских прав


lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.003 сек.