![]() |
Элементарные преобразования матриц. Ранг матрицы. Вычисление ранга матрицы.Date: 2015-10-07; view: 411. Решение произвольных систем. Теорема Кронекера-Капелли. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы. Для того чтобы система линейных уравнений была совместна, необходимо и достаточно, чтобы ранг матрицы системы был равен рангу ее расширенной матрицы.
Если при этом ранг равен числу неизвестных, то система имеет единственное решение, если он меньше числа неизвестных, решений -множество. Найти какой-либо базисный минор порядка r. Взять r уравнений, из которых составлен базисный минор. Неизвестные, коэффициенты которых входят в базисный минор, называются главными и остаются слева, а остальные называются свободными и переносятся в правую часть уравнения. Найдя главные через свободные, получим общее решение системы. Ранг матрицы — наивысший из порядков миноров этой матрицы, отличных от нуля. 1. Перестановка местами 2 параллельных рядов матрицы. 2. Умножение элементов ряда матрицы на число отличное от нуля, отличное от нуля. 3. Прибавление ко всем элементам ряда матрицы соответствующих элементов параллельного ряда, умноженных на одно и тоже число. Из элементов стоящих на пересечении выделенных строк и столбцов, составим определитель k-ого порядка.
|