Студопедия
rus | ua | other

Home Random lecture






Особые виды степенных средних величин


Date: 2015-10-07; view: 359.


Разновидностью простой средней арифметической служит средняя хронологическая величина, когда имеются моментные статистические величины на определенную одинаковую дату, например, на 1-е число каждого месяца в году. Формула средней хронологической теоретиче­скому выводу не поддается и записывается приближенно в виде

. (1.17)

где Х1 и Xn — первое и последнее значения статистической величи­ны; Xi — промежуточные значения; n — общее число значений.

По такой формуле бухгалтерия определяет среднегодовую стоимость основных фондов, учитывая ее значения на 1-е число каждого месяца. При этом n = 13, т. к. 1-е января фиксируется дважды: у отчетного и следующего за отчетным года. Аналогично коммерческие банки опре­деляют среднегодовую сумму вкладов и выданных кредитов. Если учет квартальный, то n = 5.

Средняя геометрическая величина получается при подстановке в формулу (1.11) m=0:

= =

Для раскрытия неопределенностей этого вида прологарифмируем обе части формулы (1.11):

.

Подставляя в правую часть равенства m=0, получаем неопределенность вида . Используя правило Лопиталя и дифференцируя отдельно числитель и знаменатель по переменной m, получаем

.

Следовательно, при m=0

.

Потенцируя, находим

. (1.18)

Формула (1.18) является формулой средней геометрической простой, а если использовать частоты f, получим формулу средней геометрической взвешенной:

= взвешенная, (1.19)

где П—символ произведения.

Средняя геометрическая величина применяется, если задана после­довательность индексов динамики, указывающих, например, на измене­ние уровня производства каждого последующего года по сравнению с предыдущим.

Рассчитанные для одних и тех же данных различные средние вели­чины оказываются неодинаковыми. Здесь действует правило мажорантности средних величин (впервые сформулировал профессор А. Я. Боярский), согласно которому с ростом показателя степени m в общих формулах увеличивается и средняя величина. То есть

< < < <

Это правило частично подтвердилось расчетом средней себестоимо­сти продукции, где средняя гармоническая получилась равной 4,1 руб./ед., а средняя арифметическая 4,3 руб./ед. Если рассчитать еще и среднюю геометрическую взвешенную, то она будет равной 4,2 руб./ед.


<== previous lecture | next lecture ==>
Правила применения средней арифметической и гармонической взвешенных | Структурные средние
lektsiopedia.org - 2013 год. | Page generation: 0.003 s.