Студопедия
rus | ua | other

Home Random lecture






Проверка ряда на наличие тренда


Date: 2015-10-07; view: 327.


Всякий ряд динамики теоретически может быть представлен в виде составляющих:

Ø тренд – основная тенденция развития ряда, обусловливающая увеличение или снижение его уровней;

Ø циклические (периодические) колебания (в том числе сезонные);

Ø случайные колебания.

Проверка ряда динамики на наличие в нем тренда возможна несколькими способами (в порядке усложнения):

1. Графический метод, когда на графике по оси абсцисс откладывается время, а по оси ординат – уровни ряда. Соединив полученные точки линиями, в большинстве случаев можно выявить тренд визуально.

2. Метод средних, согласно которому изучаемый ряд динамики делится на два равных подряда, для каждого из которых определяется средняя величина и . И если они различаются существенно (более 10%), то признается наличие тренда.

3. Метод Кокса и Стюарта, согласно которому ряд динамики делится на три равные по числу уровней группы и существенное различие выявляется между средними уровнями первой и третьей групп. Если общее число уровней не делится на три, то надо добавить недостающий уровень или исключить излишний.

4. Метод Валлиса и Мура, согласно которому наличие тренда признается в том случае, если ряд не содержит либо содержит в приемлемом количестве фазы, т.е. перемену знака при определении абсолютного изменения цепным способом.

5. Метод серий, согласно которому каждый уровень ряда считается принадлежащим к одному из двух типов, например типу А – меньше медианного или среднего значения или типу В – больше его. Затем в образовавшейся последовательности типов устанавливается число серий R. Они называются последовательностью уровней одинакового типа, которая граничит с уровнями другого типа. Если в ряду динамики общая тенденция к росту или снижению уровней отсутствует, то число серий является случайной величиной, распределенной приближенно по нормальному закону (при n>30) или по распределению Стьюдента (при n<30). Следовательно, если закономерности в изменениях уровней нет, то случайная величина R оказывается в доверительном интервале

где t – коэффициент доверия для принятого уровня вероятности при нормальном законе или со степенью свободы k = (n - 1) при распределении Стьюдента;

– среднее число серий в ряду, определяемое по формуле: ; – среднее квадратическое отклонение числа серий в ряду, определяемое по формуле .

Подставляя среднее число серий и его среднее квадратическое отклонение в доверительный интервал, получим его развернутое значение в виде

.

Значит, с заданной вероятностью тренд имеет место, если установленное число серий ряда не входит в доверительный интервал, и тренд отсутствует, если установленное число серий находится в этом интервале.


<== previous lecture | next lecture ==>
Средний уровень ряда и средние изменения | Непосредственное выделение тренда
lektsiopedia.org - 2013 год. | Page generation: 0.003 s.