|
Storage and transportDate: 2015-10-07; view: 468. Text 6 Energy content and statistics Text 5 Quantities of natural gas are measured in normal cubic metres (corresponding to 0° C at 1 atm) or in standard cubic feet (corresponding to 60° F and 30 inHg). The gross heat of combustion of one normal cubic metre of commercial quality natural gas is around 39 megajoules (≈10.8 kWh), but this can vary by several percent. In US units, one standard cubic foot of natural gas produces around 1000 British Thermal Units (BTUs). The actual heating value when the water formed does not condense is the net heat of combustion and can be as much as 10% less. The price of natural gas varies greatly depending on location and type of consumer, but as of 2006 a price of $10 per 1000 cubic feet is typical in the US. This correponds to around $10 per million BTU's, or around $10 per gigajoule. In the USA, at retail, natural gas is often sold in units of therms (th); 1 therm = 100,000 BTU. Wholesale transactions are generally done in decatherms (Dth), or in thousand decatherms (MDth), or in million decatherms (MMDth). A million decatherms is roughly a billion cubic feet of natural gas. The major difficulty in the use of natural gas is transportation and storage because of its low density. Natural gas pipelines are economical, but are impractical across oceans. Many existing pipelines in North America are close to reaching their capacity, prompting some politicians in colder climates to speak publicly of potential shortages. LNG carriers can be used to transport liquefied natural gas (LNG) across oceans, while tank trucks can carry liquefied or compressed natural gas (CNG) over shorter distances. They may transport natural gas directly to end-users, or to distribution points such as pipelines for further transport. These may have a higher cost, requiring additional facilities for liquefaction or compression at the production point, and then gasification or decompression at end-use facilities or into a pipeline. In the past, the natural gas which was recovered in the course of recovering petroleum could not be profitably sold, and was simply burned at the oil field (known as flaring). This wasteful practice is now illegal in many countries, especially since it adds greenhouse gas pollution to the earth's atmosphere. Additionally, companies now recognize that value for the gas may be achieved with LNG, CNG, or other transportation methods to end-users in the future. The gas is now re-injected back into the formation for later recovery. This also assists oil pumping by keeping underground pressures higher. In Saudi Arabia, in the late 1970s, a “Master Gas System” was created, ending the need for flaring. The natural gas is used to generate electricity and heat for desalinization. Similarly, some landfills that also discharge methane gases have been set up to capture the methane and generate electricity. Natural gas is often stored in underground caverns formed inside depleted gas reservoirs from previous gas wells, salt domes, or in tanks as liquefied natural gas. The gas is injected during periods of low demand and extracted during periods of higher demand. Storage near the ultimate end-users helps to best meet volatile demands, but this may not always be practicable.
|