Решение.
Date: 2015-10-07; view: 378.
Приложения.
6.1. Образец решения контрольных задач типового варианта.
1 – 10.Вычислить определитель: 
а)непосредственным разложением по строке;
б)непосредственным разложением по столбцу;
Решение. а)вычисляем определитель разложением по элементам первой строки: = .






Тогда = = 
б)вычисляем определитель непосредственным разложением по элементам второго столбца: = .






Тогда = = .
Ответ: .
11-20.Найти матрицу ,если:
, .
Решение:
1)Транспонируем матрицу : .
2)Вычисляем произведение матриц :

.
3)Находим матрицу :
.
4)Находим матрицу : 
.
Ответ: .
21-30.Найти собственные числа и векторы матрицы .
Множество собственных чисел матрицы совпадает с множеством корней характеристического уравнения матрицы : , а множество собственных векторов, отвечающих собственному числу , совпадает с множеством ненулевых решений матричного уравнения: , определяемым методом Гаусса.
Решение:
1) Составляем характеристическое уравнение матрицы :
.
Записываем его в виде алгебраического уравнения и находим действительные корни (среди них могут быть и кратные):

, .
Таким образом, собственными числами матрицы являются: и .
2)Находим собственные векторы матрицы , отвечающие различным собственным числам и .
2.1)Составляем матричное уравнениедля нахождения собственных векторов , отвечающих собственному числу : 
или
,
записываем его в виде системы линейных уравнений: и решаем методом Гаусса. Полученная система, очевидно, эквивалентна системе , имеющей специальный (трапециевидный) вид. Такая система имеет бесконечно много решений, которые записывают в виде общего решения. Для записи общего решения этой системы указываем её базисные и свободные неизвестные. Базисными являются неизвестные, столбцы коэффициентов системы при которых образуют базисный минор матрицы этой системы. Такой минор образует, например, столбец коэффициентов при неизвестной : . Поэтому выбираем в качестве базисной – неизвестную , тогда свободными будут неизвестные и . Свободным неизвестным придаём разные, произвольные постоянные значения: , , где , , одновременно, и выражаем через них значение базисной неизвестной из уравнения системы: . Тогда общее решение системы, задающее множество всех собственных векторов , отвечающих собственному числу будет иметь вид: .
2.2)Составляем матричное уравнениедля нахождения собственных векторов , отвечающих собственному числу : 
или
,
записываем его в виде системы линейных уравнений: и решаем методом Гаусса. Полученная система, очевидно, эквивалентна системе , имеющей специальный (трапециевидный) вид. Система имеет бесконечно много решений. Для записи её общего решения указываем базисные и свободные неизвестные. Базисный минор матрицы системы образуют столбцы коэффициентов при неизвестных и : . Поэтому выбираем в качестве базисных – неизвестные и , тогда свободной будет неизвестная . Свободной неизвестной придаём произвольное постоянное значение: , где и выражаем через неё значения базисных неизвестных и из уравнений системы специального (трапециевидного) вида, начиная с последнего уравнения: . Тогда общее решение системы, задающее множество всех собственных векторов , отвечающих собственному числу , будет иметь вид: , .
Ответ: , , , ;
, , .
31 – 40. Дана система уравнений: . Требуется:
а) найти решение системы методом Крамера; б) записать систему в матричном виде и найти её решение методом обратной матрицы; в) найти решение системы методом Гаусса. А) Метод Крамера.
1а)Вычисляем определитель системы и проверяем, что он отличен от нуля:

.
2а) Так как , то система имеет единственное решение, определяемое формулами Крамера: 
3а) Вычисляем определители :

,

,

.
4а) Находим решение: .
5а) Выполняем проверку: .
Ответ: .
Б) Метод обратной матрицы.
1б)Записываем систему уравнений в матричном виде:
или 
2б)Вычисляем определитель системы и проверяем, что он отличен от нуля:


3б) Так как , то матрица системы имеет обратную матрицу и единственное решение системы определяется формулой:
или 
4б)Находим обратную матрицу (методом присоединённой матрицы):
.



Тогда .
5б)Находим решение:
.
6б) Выполняем проверку: .
Ответ: .
В) Метод Гаусса.
1в)Записываем расширенную матрицу системы:
.
2в)Выполняем прямой ход метода Гаусса.
В результате прямого хода матрица системы должна быть преобразована с помощью элементарных преобразований строк к матрице треугольного или трапециевидного вида с элементами . Система уравнений, матрица которой является треугольной с элементами , имеет единственное решение, а система уравнений, матрица которой является трапециевидной с элементами , имеет бесконечно много решений.
.В результате элементарных преобразований матрица системы преобразована к специальному виду . Система уравнений, матрица которой , является треугольной с ненулевыми диагональными элементами , имеет всегда единственное решение, которое находим, выполняя обратный ход.
Замечание. Если при выполнение преобразования расширенной матрицы в преобразованной матрице появляется строка , где , то это говорит о несовместности исходной системы уравнений.
3в)Выполняем обратный ход метода Гаусса.
Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: и последовательно из уравнений системы, начиная с последнего, находим значения всех неизвестных: .
4в) Выполняем проверку: .
Ответ: .
41-60.Найти общее решение систем методом Гаусса:
а) .
|