Ñòóäîïåäèÿ
rus | ua | other

Home Random lecture






A. Zinc mining and processing


Date: 2015-10-07; view: 492.


Text 9

Zinc toxicity

Text 8

Even though zinc is an essential requirement for a healthy body, too much zinc can be harmful. Excessive absorption of zinc can also suppress copper and iron absorption. The free zinc ion in solution is highly toxic to plants, invertebrates, and even vertebrate fish. The Free Ion Activity Model (FIAM) is well-established in the literature, and shows that just micromolar amounts of the free ion kills some organisms. A recent example showed 6 micromolar killing 93% of all daphnia in water. Swallowing an American one cent piece (98% zinc) can also cause damage to the stomach lining due to the high solubility of the zinc ion in the acidic stomach. Zinc toxicity, mostly in the form of the ingestion of US pennies minted after 1982, is commonly fatal in dogs where it causes a severe hemolytic anemia.

There are zinc mines throughout the world, with the largest producers being Australia, Canada, China, Peru and the U.S.A. Mines and refiners in Europe include Umicore in Belgium, Tara, Galmoy and Lisheen in Ireland, and Zinkgruvan in Sweden. Zinc metal is produced using extractive metallurgy. Zinc sulfide (sphalerite) minerals are concentrated using the froth flotation method and then usually roasted using pyrometallurgy to oxidise the zinc sulfide to zinc oxide. The zinc oxide is leached in several stages of increasingly stronger sulfuric acid (H2SO4). Iron is usually rejected as Jarosite or goethite, removing other impurities at the same time. The final purification uses zinc dust to remove copper, cadmium and cobalt. The metal is then extracted from the solution by electrowinning as cathodic deposits. Zinc cathodes can be directly cast or alloyed with aluminium.

Electrolyte solutions must be very pure for electrowinning to be at all efficient. Impurities can change the decomposition voltage enough to where the electrolysis cell produces largely hydrogen gas rather than zinc metal

There are two common processes for electrowinning the metal, the low current density process, and the Tainton high current density process. The former uses a 10% sulfuric acid solution as the electolyte, with current density of 270–325 amperes per square meter. The latter uses 22-28% sulfuric acid solution as the electrolyte with current density of about 1000 amperes per square meter. The latter gives better purity and has higher production capacity per volume of electrolyte, but has the disadvantage of running hotter and being more corrosive to the vessel in which it is done. In either of the electrolytic processes, each metric ton of zinc production expends about 3900 kW·h (14 MJ) of electric power.

There are also several pyrometallurgical processes that reduce zinc oxide using carbon, then distill the metallic zinc from the resulting mix in an atmosphere of carbon monoxide. These include the Belgian-type horizontal-retort process, the New Jersey Zinc continuous vertical-retort process, and the St. Joseph Lead Company's electrothermal process. The Belgian process requires redistillation to remove impurities of lead, cadmium, iron, copper, and arsenic. The New Jersey process employs a fractionating column, which is absent in the Belgian process, that separates the individual impurities, where they can be sold as byproducts. The St. Joseph Lead Company process heats the zinc oxide/coke mixture by passing an electric current through it rather than by coal or gas fire.

Another pyrometallurgical process is flash smelting. Then zinc oxide is obtained, usually producing zinc of lesser quality than the hydrometallurgical process. Zinc oxide treatment has much fewer applications, but high grade deposits have been successful in producing zinc from zinc oxides and zinc carbonates using hydrometallurgy.


<== previous lecture | next lecture ==>
History | Text 10
lektsiopedia.org - 2013 ãîä. | Page generation: 0.002 s.