Студопедия
rus | ua | other

Home Random lecture






A. Look up the meaning of the following words and terms in the dictionary.


Date: 2015-10-07; view: 453.


IV. Make up a summary of the text.

III. Speaking Activities.

B. Reading Comprehension.

- What is flight?

- How does temperature affect the function of the flight muscles?

- How do the flight muscles work?

 

- What does the knowledge of insect flight give people in different spheres of life?

 

 

V. Pre-reading Activities.

• larva • angiosperm • landlubber

• arthropod • stigma • eking

• arachnid • pollination • submerge

• orangiosperm • detritus

 

B. Discuss the questions. - What are insects' natural habitats? - How the form of insects might be an adaptation to their habitat.

 

II. Reading Activities. A. Read the text using a dictionary.

WHERE INSECTS FEAR TO TREAD

Encyclopedia of animals

 

About five-sixths of known animal life is made up of insects. They flourish almost everywhere, from the Antarctic to the Arctic, in caves, lakes, deserts, and rain forests, in hot springs, and even in pools of petroleum. But oddly enough, not in the ocean. Why this should be has always been something of a mystery.

Jeroen van der Hage, a physicist at Utrecht University, thinks he may have solved it. There are few marine insects, he says, because there are almost no flowering plants in the sea. And because the two have evolved together, the absence of flowers made life in the sea impossible for insects.

It's not as if insects are completely averse to life in water. On the contrary, some 3 to 5 per cent of all insect species actually live in lakes and rivers and some have even adapted to the salinity of salt marshes. Yet almost none live beneath the surface of the open sea.

A rare exception is Pontomyia, a midge that lives as a larva submerged in Pacific tide pools, but even this unusual insect must emerge to mate and lay eggs before dying. Some coastal insects live on sand and seaweed, but none of these species are fully marine.

Previous attempts to explain the dearth of marine insects have all been unsatisfactory, according to Van der Hage. Some theories have suggested that physical barriers such as waves and salt have prevented an insect invasion; others proffer the view that predatory fish were a deterrent. Van der Hage points out that such obstacles have not hindered other arthropods, such as arachnids, in the slightest. Around 400 different sea spiders and many mites live quite happily in the sea.

They might thrive but flowering plants, orangiosperms, don't. The vast majority of pant life in the ocean consists of simple plants that lack true leaves, stems, or roots. There are only about 30 marine angiosperms, and all live in coastal regions.

The reason flowering plants, which evolved on land, have been unable to colonize the sea, says Van der Hage, has to do with the movement of particles in a fluid. If a pollen grain is immersed in a fluid of the same density, such as water, then pollen released from an underwater flower will be swept away by the water flow.

Even if an animal or fish were to carry a few pollen grains to a flower's stigma, flowing water would wash them off. Pollination thus becomes extremely difficult and this is why flowers are rare underwater.

According to the conventional view, to which Van der Hage subscribes, insects as a group languished for some 250 million years, eking out an existence foraging in detritus. But when flowering plants appeared some 115 million years ago, the fortunes of insects changed dramatically.

They exploded across the planet, developing a variety of specialized mouth parts for feeding on pollen and nectar, until most became dependent on some flower for survival. And those insects that didn't feed on flowers probably fed on insects that did. Since flowering plants failed to colonize the ocean, insects, says Van der Hage, remained landlubbers. Unfortunately, his argument fails to convince paleobiologist, Conrad Labandeira. Some years ago, Labandeira advanced the idea that insects diversified long before the advent of flowering plants, evolving highly - specialized mouth parts to feed, not on flowers, but other more primitive plants.

He explains the oceans' lack of insects very simply: «There are no trees in the sea. An average tree contains a multitude of habitats for insects-roots, bark, strengthening tissues, seeds, leaves» he says.

By comparison, seaweed often consists of just a few spongy leaf-like tissues. What gives terrestrial ecosystems such a unique habitat for insects is the tremendous architectural diversity of plants. In the ocean, that diversity is simply not there.

B. Reading Comprehension.- What prevents insects from living in water, according to Van der Hage?- Why were the previous ideas insufficient?- Why does paleobiologist Conrad Labandeira disagree with Van der Hage? What is his argument?

Ш. Speaking Activities. - How do insects maintain stability in the ecosystem?

IV. Writing Activities. - Explain the benefits of insect observation.

V. Give a summary of the following text in English using a dictionary. . Bикипедия

Впервые исследователям удалось записать и декодировать полёт саранчи, что даёт ключ к аэродинамике насекомых в целом. О прорыве сообщили Джон Янг (John Young) из университета Нового Южного Уэльса (UNSW) и команда зоологов из Оксфорда (University of Oxford). Учёные использовали высокоскоростные цифровые видеокамеры, чтобы заснять движение саранчи в аэродинамической трубе. Крылья насекомых, как известно, — сложные структуры, имеющие множество выпуклостей, впадин и покрытые сверх того различными прожилками и морщинками микроскопических размеров. Но до сих пор было не вполне ясно, какую роль играют все эти особенности. Потому на втором этапе исследования учёные имели дело с саранчой уже виртуальной, последовательно удалив с её крыльев вначале мелкие детали рельефа, а затем сгладив и сам необычный изгиб крыльев. Опыт показал, что мелкие детали не вносят в картину обтекания заметных перемен, а вот сама форма крыла как раз делает полёт насекомого столь эффективным. Саранча, изменённая на компьютере, существуй она в реальности, была бы куда более энергоёмкой и медленной. Результаты работы, опубликованные в журнале Science, означают, что инженеры впервые раскрыли аэродинамические секреты одного из наиболее эффективных летунов в природе. Эта информация необходима, например, для создания миниатюрных летающих роботов с маневренностью и энергоэффективностью насекомого. Подобные механизмы можно использовать для поиска и спасения людей, выполнения военных миссий и проверки опасной среды. Так называемый парадокс шмеля (Bumblebee paradox), утверждающий, что насекомые бросают вызов законам аэродинамики, отныне отменён. Современная аэродинамика может в точности смоделировать полёт насекомого. Биологические системы оптимизировались путём давления эволюции в течение миллионов лет, они предлагают много примеров результативности, которые намного превосходят всё то, чего мы можем достичь искусственно. До недавнего времени у нас не было технической возможности измерить фактическую форму крыльев насекомого в полёте – отчасти из-за скорости движения, отчасти из-за объёмности самой задачи. Но теперь этот вопрос решён". Саранча – насекомое, чрезвычайно интересное из-за его способности к перелёту на огромные расстояния при весьма ограниченном запасе энергии.

 


<== previous lecture | next lecture ==>
 | 
lektsiopedia.org - 2013 год. | Page generation: 0.003 s.