![]() |
Potts modelDate: 2015-10-07; view: 415. Another important model which may described in terms of random curves in the Q-state Potts model. This is most easily considered on square lattice, at each site of which is a variable s (r) which can take Q (initially a positive integer) different values. The partition function is
with eβJ = (1 − p)−1. The product may be expanded in a similar way to the case of the Ising model. All possible graphs
where The limit Q → 1 gives another realisation of percolation—this time bond percolation on the square lattice. For Q → 0 there is only one cluster. If at the same time x → 0 suitably, all loops are suppressed and the only graphs The random cluster model may be realised as a gas of dense loops in the way illustrated in Fig. 3. These loops lie on the medial lattice, which is also square but has twice the number of sites. It may be shown that, at pc, the weights for the clusters are equivalent to counting each loop with a fugacity
Fig. 3. Example of FK clusters (heavy lines) in the random cluster representation of the Potts model, and the corresponding set of dense loops (medium heavy) on the medial lattice. The loops never cross the edges connecting sites in the same cluster. To generate an open path in the random cluster model connecting sites r1 and r2 on the boundary we must choose ‘wired' boundary conditions, in which p = 1 on all the edges parallel to the boundary, from r1 to r2, and free boundary conditions, with p = 0, along the remainder.
|