Студопедия
rus | ua | other

Home Random lecture






Изменение матрицы линейного преобразования при изменении базиса .


Date: 2015-10-07; view: 522.


Линейные преобразования. Матрица линейного преобразования.

Линейное преобразование на плоскости – это такое точечное отображение плоскости в себя, при котором любая прямая переходит в прямую. Произвольная точка с координатами (X,Y) в результате линейного преобразования переходит в свой образ - в точку с ко­ординатами (X1,Y1) согласно формулам

X1 = A´X+B´Y+C, Y1 = D´X+E´Y+F,

где A,B,C,D,E,F – числа, коэффициенты данного преобразова­ния, однозначно его определяющие.

Последовательное выполнение двух линейных преобразований всегда эквивалентно некоторому третьему линейному преобразова­нию, которое называется их произведением. Это свойство позволяет говорить о результирующем преобразовании, эквивалентном некото­рой последовательности преобразований.

В предыдущем разделе мы установили, что как только в линейном пространстве выбран базис, то каждому линейному преобразованию соответствует матрица этого преобразования. Однако если выбрать в пространстве другой базис, то матрица преобразования, как правило, станет другой. Выясним, как эти матрицы связаны между собой.

Пусть L -- -мерное линейное пространство, и -- два базиса в этом пространстве. Первый из них назовем "старым", а второй -- "новым". Пусть -- матрица перехода 19.1.4 а от старого базиса к новому.

Предложение 19.1 Пусть -- линейное преобразование пространства , и -- матрицы этого преобразования в старом и новом базисе соответственно. Тогда

Доказательство. Пусть -- произвольный вектор пространства , -- его образ, то есть . Пусть и -- координатные столбцы векторов и в старом базисе, а , -- в новом. Тогда в силу формулы (19.3) . По предложению 18.5 имеем , . Подставим эти выражения в предыдущую формулу, получаем . Откуда . С другой стороны, в силу формулы (19.3) в новом базисе . Сравнивая это равенство с предыдущим, получаем .

Определение 19.2 Две квадратных матрицы и одного порядка называются подобными, если существует такая невырожденная матрица , что .

Следствие 19.1 Матрицы одного линейного преобразования, соответствующие разным базисам, подобны друг другу, и наоборот, если матрицы подобны, то они являются матрицами одного и того же преобразования в разных базисах.


<== previous lecture | next lecture ==>
Формулировка | Собственные значения и собственные векторы линейного преобразования.
lektsiopedia.org - 2013 год. | Page generation: 7.209 s.