Главная страница Случайная лекция Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика Мы поможем в написании ваших работ! |
Магнитоэлектрические амперметры и вольтметры
Измерение постоянных токов, напряжений и количества электричества ОСНОВНЫЕ МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЙ ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ ВЕЛИЧИН Лекция 2.1
Измерение постоянных токов и напряжений в подавляющем большинстве случаев производится посредством магнитоэлектрических амперметров и вольтметров. Для этой цели применяют также электромагнитные, электродинамические, ферродинамические и электростатические приборы, а также потенциометры постоянного тока и цифровые приборы. Для измерения малых количеств электричества, протекающих в течение коротких промежутков времени (доли секунды), применяют главным образом баллистические гальванометры. Большие количества электричества, протекающие за большой промежуток времени (например, в течение нескольких часов), измеряют кулонметрами. Измерительные механизмы магнитоэлектрических амперметров и вольтметров принципиально не различаются. В зависимости от назначения прибора (для измерения тока или напряжения) меняется его измерительная цепь. В амперметрах измерительный механизм включается в цепь непосредственно или при помощи шунта. В вольтметрах последовательно с измерительным механизмом включается добавочный резистор, и прибор подключается к тем точкам схемы, между которыми необходимо измерить напряжение. Амперметр без шунта применяется в том случае, если весь измеряемый ток можно пропустить через токоподводящие пружинки (или растяжки) и обмотку рамки измерительного механизма. Обычно значение этого тока не превышает 20—30 мА, т. е. такая схема возможна только для микро- и миллиамперметров. Характер измерительной цепи в значительной степени определяется также допустимой температурной погрешностью и пределом измерения прибора. Изменение температуры прибора сказывается на его работе следующим образом. 1. При повышении температуры удельный противодействующий момент пружинок (или растяжек) уменьшается примерно на 0,2— 0,4% на каждые 10 К повышения температуры. Магнитный поток постоянного магнита падает приблизительно на 0,2% на каждые 10 К повышения температуры. Так как ослабление пружинок и уменьшение магнитного потока вызывают одинаковые изменения противодействующего и вращающего моментов по значению, но с разными знаками, то эти два явления практически взаимно компенсируют друг друга. 2. Изменяется электрическое сопротивление обмотки рамки и пружинок. Это является основным источником температурной погрешности магнитоэлектрических приборов. В большинстве случаев температурная погрешность вольтметров является незначительной. Это объясняется тем, что температурный коэффициент сопротивления (ТКС) цепи вольтметра определяется не только ТКС «медной» части обмотки измерительного механизма, но и добавочного резистора, выполняемого из материала с очень малым ТКС. Наиболее неблагоприятным в отношении влияния температуры является амперметр с шунтом. При повышении температуры и неизменных значениях измеряемого тока и сопротивления шунта Rш (шунт, как указывалось выше, выполняется из манганина) ток I, протекающий через измерительный механизм, уменьшается и появляется отрицательная погрешность. Магнитоэлектрические амперметры и вольтметры выпускают переносными и щитовыми. Переносные приборы в большинстве случаев делают высокоточными (классов 0,1—0,5), многопредельными (до нескольких десятков пределов) и часто комбинированными (например, вольтамперметрами). В качестве многопредельного комбинированного прибора можно указать, например, милливольт-миллиамперметр типа M1109 класса точности 0,2. Прибор имеет 15 пределов измерений: 8 — по напряжению (от 15 мВ до 3 В) и 7 — по току (от 0,15 до 60 мА). Щитовые приборы выпускают обычно однопредельными, чаще всего классов точности 1,0 и 1,5.
Дата добавления: 2014-03-19; просмотров: 414; Нарушение авторских прав Мы поможем в написании ваших работ! |