Функции от случайных векторов
Пусть – двумерный случайный вектор с заданным законом распределения и случайная величина , где – неслучайная скалярная функция двух переменных, область определения которой содержит множество возможных значений вектора . Рассмотрим задачу нахождения закона распределения случайной величины .
Предположим вначале, что – дискретный случайный вектор, принимающий конечное число значений с вероятностями , (случай счетного числа значений случайного вектора рассмотреть самостоятельно). Тогда – дискретная случайная величина и ее возможными значениями , являются различные среди значений ( может быть). При этом вероятности значений аналогично одномерному случаю определяются по формуле:
, . (4.8)
Если – непрерывный случайный вектор с плотностью вероятностей , а функция дифференцируема по каждому из своих аргументов, то является непрерывной случайной величиной. При этом функция распределения случайной величины определяется формулой:
, (4.9)
а плотность вероятностей находится дифференцированием по .
Дата добавления: 2015-06-30; просмотров: 301; Нарушение авторских прав Поделиться с ДРУЗЬЯМИ:
|