![]() Главная страница Случайная лекция ![]() Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика ![]() Мы поможем в написании ваших работ! |
Процент. Основные задачи на проценты
1º. Процентом называется сотая часть какого-либо числа. Следовательно, само число составляет 100 процентов. Слово «процент» заменяют знаком %, т.е. 2º. При решении основных задач на проценты (нахождение процентов данного числа; нахождение числа по его процентам) некоторая величина b принимается за 100 %, а ее часть – величина a – принимается за p % и составляется пропорция
Из этой пропорции по двум известным величинам определяют искомую третью величину, пользуясь основным свойством пропорции: b · p = 100 · a . Пример 2. Сколько процентов числа 7 составляет разность между ним и 4 % числа 28? Решение. Найдем 4 % от числа 28. Чтобы найти проценты от числа, надо перевести проценты в десятичную дробь и умножить данное число на эту дробь. Это будет: 28 · 0,04 = 1,12. Определим разность 7 – 1,12 = 5,88. Найдем, сколько процентов числа 7 составляет 5,88. Для этого составим пропорцию: число 7 – 100 %, число 5,88 – x %. Отсюда 3º. Чтобы найти процентное отношение двух чисел a и b, надо отношение этих чисел умножить на 100%, т.е. вычислить 4º. При нахождении суммы вклада в банк используют формулу простых процентов или формулу сложных процентов. Простой процентный рост: Сложный процентный рост:
Дата добавления: 2015-07-26; просмотров: 233; Нарушение авторских прав ![]() Мы поможем в написании ваших работ! |