![]() Главная страница Случайная лекция ![]() Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика ![]() Мы поможем в написании ваших работ! |
Транспортная задача. В простейшем варианте эта задача возникает, когда речь идет о рациональной перевозке некоторого однородного продукта от производителей к потребителям
В простейшем варианте эта задача возникает, когда речь идет о рациональной перевозке некоторого однородного продукта от производителей к потребителям. Предполагается, что потребителям безразлично откуда (из каких пунктов производства будет поступать продукт), лишь бы он поступал в запрашиваемом объеме. Однако от того, насколько рациональным будет прикрепление пунктов потребления к пунктам производства, существенно зависит объем работы транспорта. В этой связи возникает задача о наиболее рациональном прикреплении, правильном направлении перевозок груза, при котором потребности удовлетворяются, а затраты на транспортировку минимальны. Математическая модель задачи описывается так. Пусть имеется m пунктов производства в единицу времени (месяц, квартал), равными ai=( Необходимо составить такой план перевозок, при котором были бы удовлетворены потребности во всех пунктах потребления и при этом суммарные затраты на перевозку были бы минимальными. Обозначая через xij количество продукта, перевозимое из I –го пункта производства в j-й пункт потребления, приходим к следующей математической модели: Найти значения величин xij, чтобы достигался min 1. 2. 1. xij= Эта задача может быть поставлена и в параметрической постановке, например, зависеть от времени.
Дата добавления: 2015-07-26; просмотров: 167; Нарушение авторских прав ![]() Мы поможем в написании ваших работ! |