Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Источники ионизирующего излучения

Природа ионизирующего излучения

Ионизирующим излучением («И.И.») называют потоки частиц и электромагнитных волн, взаимодействие которых со средой вызывает ионизацию ее молекул и атомов. К электромагнитному «И.И» относят жесткое ультрафиолетовое, рентгеновское и g-излучение. К корпускулярному «И.И» относят все частицы, энергия которых больше или равна энергии ионизации, в частности, потоки:

o бета-частиц (электронов и позитронов);

o альфа-частиц (ядер атома гелия-4);

o нейтронов;

o протонов, других ионов, мюонов и др.;

o осколков деления (тяжёлых ионов, возникающих при делении ядер).

Источники ионизирующего излучения

Природные источники ионизирующего излучения:

· Спонтанный радиоактивный распад радионуклидов.

· Термоядерные реакции, например на Солнце.

· Индуцированные ядерные реакции в результате попадания в ядро высокоэнергетичных элементарных частиц или слияния ядер.

· Космические лучи.

Искусственные источники ионизирующего излучения:

· Искусственные радионуклиды.

· Ядерные реакторы.

· Ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение).

o Рентгеновский аппарат как разновидность ускорителей, генерирует тормозное рентгеновское излучение.

Наведённая радиоактивность

Многие стабильные атомы в результате облучения и соответствующей индуцированной ядерной реакции превращаются в нестабильные изотопы. В результате такого облучения стабильное вещество становится радиоактивным, причем тип вторичного ионизирующего излучения будет отличаться от первоначального облучения. Наиболее ярко такой эффект проявляется после нейтронного облучения.

Измерение ионизирующих излучений

В бытовом и промышленном применении наибольшее применение получили дозиметры на базе счётчиков Гейгера. Как правило, такие приборы корректно регистрируют только гамма-излучение.

o 4. Количественные характеристики ионизирующих излучений

Эффективность взаимодействия ионизирующего излучения с веществом зависит от типа излучения, энергии частиц и сечения взаимодействия облучаемого вещества. Важными показателями взаимодействия ионизирующего излучения с веществом служат такие величины, как:

- линейная плотность ионизации(i), под которой понимают отношение числа dn ионов одного знака, которые образуются при прохождении «И.И.» элементарного пути dl к этому пути:

i = dn/dl(1)

- линейная тормозная способность вещества (S), под которой понимают отношение энергии dE, которая теряется «И.И.» при прохождении элементарного пути dl к этому пути:

S = dE/dl(2)

Средний линейный пробег R - это среднее значение расстояния между началом и завершением прохождения «И.И.» в данном веществе.

При изучении степени поражения тех или иных биологических объектов необходиме иметь представление о физических характеристиках излучения, особенно о его энергии.

Действие на вещество обусловлено не всем падающим на него «И.И.», а только той его частью, которая взаимодействует с атомами и молекулами вещества и при этом поглощается. Поэтому основной величиной, характеризующей действие «И.И.» (причем всех его типов), на вещество является энергия излучения, поглощаемая единицей массы m завремя облучения. Эта величина називается поглощенной дозой Dп и определяется формулой:

Dп = E /m (3)

Согласно этому определению единицей поглощенной дозы в системе СИ является [Dп] = 1 Дж/кг, т.е. такая поглощенная доза излучения, при которой в 1 кг массы облучаемого вещества поглощается 1 Дж энергии будь-какого «И.И». Другим названием этой единицы является Грей (Гр), т.е. І Гр = 1 Дж/кг.

Применяется также и внесистемная единица поглощенной дозы «И.И», которая називается рад (это абревиатура англоязычного термина "гаdіаtіоn аbsоrbed dозе" - доза поглощенной радиации). Рад есть поглощенная доза будь-какого вида «И.И», при которой в 1 кг вещества поглощается 0,01 Дж энергии. Т.е. 1 Рад = 0,01 Гр.

Для оценки величини поглощенной дозы за единицу времени вводится понятие мощности поглиненою дози Pп:

Pп = E / m×t (2)

де t – проміжок часу за який була поглинена доза Dп. Згідно з цим визначенням одиницею потужності поглиненої дози в системі СІ є [Р] = 1 Гр /с.

Здавалось би, що для знаходження поглиненої дози необхідно виміряти енергію іонізуючого випромінювання, що падає на тіло, а також енергію, яка пройшла крізь тіло, і їх різницю поділити на масу тіла. Проте здійснити це практично дуже складно. Це зумовлено тим, що тіло неоднорідне, енергія розсіюється тілом по усім можливим напрямках і т. п. Таким чином, конкретне і досить зрозуміле поняття «поглиненої дози» є мало застосовуваним в експерименті. Але можливо оцінити поглинену тілом дозу по іонізуючій дії випромінювання у повітрі, яке оточує тіло.

У зв’язку з чим вводять ще одне поняття дози - експозиційну дозу випромінювання Dексп, яка є мірою іонізації повітря для рентгенівського і g-випромінювання. Експозиційну дозу визначають по величині заряду Q який утворюється в одному кілограмі сухого повітря при проходженні через нього рентгенівського або g- випромінювання:

Dексп = Q / m (3)

За одиницю експозиційної дози прийнято кулон на кілограм(Кл/кг). На практиці використовують одиницю, яку называемую рентгеном(Р), - експозиційна доза рентгенівського або g-випромінювання, при якій унаслідок повної іонізації в 1 см3 сухого повітря (0,001293 г) при 0 °С и 760 мм рт. ст. утворюється 2,08 • 109 пар іонів. 1 Р = 2,58•10-4 Кл/кг.

Для оцінки величини експозиційної дози за одиницю часу вводиться поняття потужності експозиційної дози Pекс:

Pекс = Dексп /t = Q / m×t (2)

де t – проміжок часу за який була створена експозиційна доза Dексп. Згідно з цим визначенням одиницею потужності поглиненої дози в системі СІ є [Pекс] = 1 Кл /кг×с = А/кг, а позасистемною одиницею - 1 Р/с.

Потужность експозиційної дози радіоактивного елементу, активність розпаду якого А на відстані від місця його знаходження може бути знайдена за формулою:

P = kA/r2 (4)

де k – гамма постійна, яка залежить від виду радіоактивного елементу.

Так як поглинена доза пропорційна падаючому іонізуючому випромінюванню, то між нею і експозиційною дозою повинна бути пропорційна залежність:

Dп = f×Dексп (5)

де f - деякий перехідний коефіциєнт, що залежить від ряду обстави і перш за все від виду речовини, що опромінюється і енергії фотонів.

Найбільш просто встановити значення коефіціента f, якщо речовиною, яка опромінюється є повітря. При X =1 Р в 0,001293 г повітря утворюється 2,08 • 109 пар іонів; звідки слідує, що в 1 г повітря знаходиться 2,08•109/0,001293 пар іонів. У середньому на утворення однієї пари іонів витрачається енергія 34 еВ. Це означає, що в 1 г повітря поглинається енергія випромінювання, яка дорівнює (2,08×109/0.001293)•34•1,6•10-19Дж/г = 88 • 10 4Дж/кг. 0,001293

Таким чином, поглинена доза 88•10-4 Дж/кг у повітрі енергетично еквівалентна 1 Р. Тоді згідно формулі (5) маємо: Dп = 0,88×Dексп, якщо Dп вимірюється в радах, а Dексп - в рентгенах. Коефіціент f для повітря мало залежить від енергії фотонів. Для води та м’яких тканин тіла людини f=1; тобто доза випромінювання у радах чисельно дорівнює відповідній експозиційній дозі у рентгенах. Це і обумовило використання позасистемних одиниць - рада і рентгена. Для кістової тканини коефіціент f зменьшується із зростанням енергії фотонів приблизно від 4,5 до 1. Для даного виду випромінювання біологічна дія звичайно тим більша, чим більша доза опромінення. Проте різні випромінювання навіть при одній і тій же поглиненій дозі зумовлюють різні дії.

У дозиметрії прийнято порівнювати біологічні ефекти різних випромінювань з відповідними ефектами, що викликані рентгенівським і g-випромінюваннями.

Коефіціент К, який показує, у скільки разів ефективність біологічної дії даного виду випромінювання більше, ніж рентгенівського або g-випромінювання, при однаковій дозі поглиненій у тканинах, називається коефіціентом якості. В радіобіології його називають також відносною біологічною ефективністю(ВБЕ).

Коефіціент якості встановлюють на основі дослідних даних. Він залежить не тільки від виду частинки, але і від її енергії. Наведемо приблизні значення К (табл. 1) для деяких випромінювань (у дужках наведена енергія частинок).

 

Таблиця 1

 

Вид випромінювання К
Рентгенівське, g і b-випромінювання
Теплові нейтрони ( 0,01 еВ)  
Нейтрони (5МеВ)  
Нейтрони (0,5 МеВ)  
a-випромінювання  

 

Поглинена доза сумісно із коефіціентом якості дає уявлення про біологічну дію іонізуючого випромінювання, тому добуток DKвикористовують як єдину міру цієї дії і називають еквівалентною дозою випромінювання Dе:

Dе = DK (6)

Так як К - безрозмірний коефіциент, то еквівалентна доза випромінювання має ту ж розмірність, що і поглинена доза випромінювання, але називається зівертом(Зв). Позасистемна одиниця еквівалентної дози - бер, 1 бэр = 10-2 Зв. Еквівалентна доза у берах дорівнює дозі випромінювання в радах, помножена на коефіциент якості. Природні радіоактивні джерела (космічні промені, радіоактивнсть надр, води, радіоактивність ядер, що входять до складу тіла людини і т.п.) створюють фон, який відповідає приблизно еквівалентній дозі 125 мбер на протязі року. Гранично допустимою еквівалентною дозою при професійному опроміненні вважається 5 бер на протязі року. Мінімальна леталь­на доза від g-випромінювання біля 600 бер. Ці дані відповідають опроміненню усього організму.

3. Дозиметрія іонізуючого випромінювання.

Необхідність кількісної оцінки дії іонізуючого випромінювання на різні речовини живої та неживої природи сприяла появі дозиметрії. Дозиметрією називають розділ ядерної фізики і вимірювальної техніки, в якому вивчають величини, що характеризують дію іонізуючого випромінювання на речовини, а також методи і прилади для їх вимірювання. Спочатку розвиток дозиметрії був зумовлений необхідністю урахування дії рентгенівського випромінювання на людину. До складу дозиметрів входять 2 основні частини -детектор та вимірювальний (лічильний) пристрій. Детекторами іонізуючого випромінювання називають прилади, що реєструють a-, b-, рентгенівське, g-випромінювання, нейтрони, протони і т. п. Детектори використовують також для вимірювання енергії частинок, вивчення процесів їх взаємодії, розпаду і т. п.

 

 


Рис.1. Принципова схема дозиметра.

 

Робота детекторів заснована на тих процесах, які викликають випромінювання, що реєструють у речовині.

Залежно від фізичного принципу, який покладений в роботу детектора, дозиметричні прилади поділяються на:

1) іонізаційні, в яких використовується явище іонізації газів під дією випромінювання (різні іонізаційні камери, пропорційні лічильники, лічильник Гейгера-Мюллера тощо);

2) радіолюмінесцентні, в основі роботи яких лежить явище люмінесценції під дією радіоактивного випромінювання, тобто радіолюмінесценція;

3) напівпровідникові, в котрих використовується явище внутрішнього фотоефекту, внаслідок якого електрони під дією радіації долають заборонену зону і з'являються в зоні провідності, що призводить до зниження опору (збільшення електропровідності);

4) кристалічні, в яких під дією радіоактивного випромінювання з'являється характерний колір (зокрема, таке відбувається в лужно-галоїдних кристалах при їх опроміненні g-радіацією);

5) фотокасетні, в яких використовується дія іонізуючого випромінювання на фотоплівки;

6) хімічні,робота яких базується на вимірюванні енергетичного виходу екзотермічних хімічних реакцій під дією іонізуючого випромінювання;

7)колориметричні,які дають змогу розрахувати потужності досить значних потоків випромінювання шляхом порівняння їх теплової та іонізаційної дії.

Важливою і складною проблемою дозиметрії іонізуючо­го випромінювання є розрахунки (реконструкція) доз, якщо відомий потік випромінювання через певну поверхню. Так, наприклад, поглинена доза g-випромінювання (в рад) може бути розрахована за формулою

Dп = 1.6×10-5N×h×n(mк + mп + mф)

де N - кількість g-квантів з енергією h×n, що падають перпендикулярно до 1 смповерхні. Вираз у круглих дужках характеризує лінійний коефіцієнт послаблення, що віднесений до одиниці маси речовини і який відповідає відомим первинним механізмам дії g-випромінювання: - комптон-ефекту (mк), фотоефекту (mф) і утворенню електронно-позитронних пар (mп). Чисельний коефіцієнт дає можливість перевести поглинену дозу Dп, (МеВ)в Dп, (рад). Доза b -випромінювання може бути знайдена, якщо відома кількість b - частинок, що падають на речовину, та середнє значення іонізаційних втрат при проходженні b -променів крізь речовину.

 

энергию излучение передаёт среде на единице длины пробега при единичной плотности вещества, а также поглощённая доза излучения, показывающая, какая энергия излучения поглощается в единице массы вещества. В Международной системе единиц СИ единицей поглощённой дозы является грэй (Гр, англ. gray, Gy), численно равный поглощённой энергии в 1 Дж на 1 кг массы вещества. Иногда встречается устаревшая внесистемная единица рад (англ. rad): доза, соответствующая поглощенной энергии 100 эрг на 1 грамм вещества. 1 рад = 0,01 Гр.

Также широко применяется устаревающее понятие экспозиционная доза излучения — величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Для этого обычно используют внесистемную единицу экспозиционной дозы рентген (Р, англ. roentgen, R): доза фотонного излучения, образующего ионы с зарядом в 1 ед. заряда СГСЭ ((1/3)×10−9 кулон) в 1 см³ воздуха. В системе СИ используется единица кулон на килограмм (Кл/кг, англ. C/kg): 1 Кл/кг = 3876 Р; 1 Р = 2,57976×10−4 Кл/кг.[9]

Активность радиоактивного источника ионизирующего излучения определяется как среднее количество распадов ядер в единицу времени. Соответствующая единица в системе СИ беккерель (Бк, англ. Becquerel, Bq) обозначает количество распадов в секунду. Применяется также внесистемная единица кюри (Ки, англ. Ci). 1 Ки = 3,7×1010 Бк. Первоначальное определение этой единицы соответствовало активности 1 г радия-226.

Физические свойства ионизирующих излучений

Альфа-излучение представляет собой поток альфа-частиц — ядер гелия-4. Альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги. Бета-излучение — это поток электронов, возникающих при бета-распаде; для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров. Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом; для защиты эффективны тяжёлые элементы (свинец и т. д.), поглощающие МэВ-ные фотоны в слое толщиной несколько см. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

По механизму взаимодействия с веществом выделяют непосредственно потоки заряженных частиц и косвенно ионизирующее излучение (потоки нейтральных элементарных частиц — фотонов и нейтронов). По механизму образования — первичное (рождённое в источнике) и вторичное (образованное в результате взаимодействия излучения другого типа с веществом) ионизирующее излучение.

Энергия частиц ионизирующего излучения лежит в диапазоне от нескольких сотен электронвольт (рентгеновское излучение, бета-излучение некоторых радионуклидов) до 1015 — 1020 и выше электронвольт (протоны космического излучения, для которых не обнаружено верхнего предела по энергии).

Длина пробега и проникающая способность сильно различаются — от микрометров в конденсированной среде (альфа-излучение радионуклидов, осколки деления) до многих километров (высокоэнергетические мюоны космических лучей).

Биологическое действие ионизирующих излучений

Разные типы ионизирующего излучения обладают разным разрушительным эффектом и разным способом воздействия на биологические ткани. Соответственно, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятие относительной биологической эффективности излучения, которая измеряется с помощью коэффициента качества. Для рентгеновского, гамма- и бета-излучений коэффициент качества принят за 1. Альфа-излучение и осколки ядер имеют коэффициент качества составляет 10…20. Нейтроны — 3…20 в зависимости от энергии. Для заряженных частиц биологическая эффективность прямо связана с линейной передачей энергии данного типа частиц (средняя потеря энергии частицей на единицу длины пробега частицы в ткани).

Для учёта биологического эффекта поглощённой дозы была введена эквивалентная поглощённая доза ионизирующего излучения, численно равная произведению поглощённой дозы на коэффициент биологической эффективности. В системе СИ эффективная и эквивалентная поглощенная доза измеряется в зивертах (Зв, англ. sievert, Sv).

Ранее широко применялась единица измерения эквивалентной дозы бэр (Биологический Эквивалент Рентгена для гамма-излучения, англ. rem). Эквивалентная доза 1 бэр соответствует облучению гамма-квантами с поглощённой дозой 1 рентген. Эквивалентная поглощённая доза приводится к поглощённой дозе гамма-излучения, поскольку массовые измерительные приборы регистрируют в основном именно гамма-излучение, и такая величина наиболее соответствует возможностям измерений. Для рентгеновского и гамма-излучений 1 бэр = 0,01 Зв, соответственно принимают, что 1 рентген = 0,01 Зв.

Помимо биологической эффективности, необходимо учитывать проникающую способность излучений. Например, тяжёлые ядра атомов и альфа-частицы имеют крайне малую длину пробега в сколько-нибудь плотном веществе, поэтому радиоактивные альфа-источники опасны при попадании внутрь организма. Наоборот, гамма-излучение обладает значительной проникающей способностью.

Некоторые радиоактивные изотопы способны встраиваться в процесс обмена веществ живого организма, замещая неактивные элементы. Это приводит к удержанию и накоплению радиоактивного вещества непосредственно в живых тканях, что существенно увеличивает опасность контакта. Например, широко известны йод-131, изотопы стронция, плутония и т.п.. Для характеристики этого явления используется понятие период полувыведения изотопа из организма.

Механизмы биологического воздействия

Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.

После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1—2 Зв на всё тело.

В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации).

Основным источником информации о стохастических эффектах воздействия ионизирующего излучения являются данные наблюдений за здоровьем людей, переживших атомные бомбардировки Хиросимы и Нагасаки. Японские специалисты в течение всех лет после атомной бомбардировки двух городов наблюдали тех 87 500 человек, которые пережили ее. Средняя доза их облучения составила 240 миллизиверт. При этом прирост онкологических заболеваний за последующие годы составил 9 %. При дозах менее 100 миллизиверт отличий между ожидаемой и наблюдаемой в реальности заболеваемостью никто в мире не установил.[11]

Гигиеническое нормирование ионизирующих излучений

Нормирование осуществляется по санитарным правилам и нормативам СанПин 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)». Устанавливаются дозовые пределы эквивалентной дозы для следующих категорий лиц:

· персонал — лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);

· все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Основные пределы доз и допустимые уровни облучения персонала группы Б равны четверти значений для персонала группы А.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для обычного населения за всю жизнь — 70 мЗв. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

Применение ионизирующих излучений

Ионизирующие излучения применяются в различных отраслях:

· Интроскопия.

· Стерилизация медицинских инструментов, расходных материалов и продуктов питания.

· В медицине (рентгенография, рентгеноскопия, лучевая терапия, некоторые виды томографии).

· Источники света.

· Датчики пожара (задымления).

· Датчики и счетчики предметов.

В медицине

Для лечения опухолей и других патологических очагов используют облучение гамма-квантами, рентгеном, электронами, тяжёлыми ядерными частицами, такими как протоны, тяжёлые ионы, отрицательные π-мезоны и нейтроны разных энергий. Используется также введение в организм радиофармацевтических препаратов, как с лечебными, так и с диагностическими целями.

Взаимодействие ионизирующего излучения с веществом

Заряженные частицы и g-фотоны, распространяясь в веществе, взаимодействуют с электронами и ядрами, в результате чего изме­няется состояние как вещества, так и частиц.

Основным механизмом потерь энергии заряженной частицы (a и b) при прохождении через вещество является ионизационное торможение. При этом ее кинетическая энергия расходуется на возбуждение и ионизацию атомов среды.

Взаимодействие частицы с веществом количественно оценива­ется линейной плотностью ионизации, линейной тормозной спо­собностью вещества и средним линейным пробегом частицы.

Под линейной плотностью ионизации i понимают отношение числа dn ионов одного знака, образованных заряженной ионизи­рующей частицей на элементарном пути dl, к этому пути: i = dn/dl.

Линейной тормозной способностью вещества S называют от­ношение энергии dE, теряемой заряженной ионизирующей части­цей при прохождении элементарного пути dl в веществе, к длине этого пути: S = dE/dl.

Средним линейным пробегом заряженной ионизирующей час­тицы R является среднее значение расстояния между началом и кон­цом пробега заряженной ионизирующей частицы в данном веществе.

График зависимости линейной плотности ионизации от пути х, проходимого a-частицей в среде (воздух), показан на рис. 27.3. По мере продвижения частицы в среде уменьшаются ее энергия и ско­рость, линейная плотность иониза­ции при этом возрастает и только при завершении пробега части­цы резко убывает.

Возрастание i обусловлено тем, что при меньшей скорости a-частица больше време­ни проводит вблизи атома и, таким образом, возрастает вероятность ионизации атома. Как видно из

рисунка, линейная плотность ионизации a-частиц естественно-радиоактивных изотопов в воздухе при нормальном давлении составляет i = (2 ¸ 8) • 106 пар ионов/м.

Так как для ионизации молекул, входящих в состав воздуха, тре­буется энергия около 34 эВ, то значения линейной тормозной спо­собности вещества (воздуха) S лежат в интервале 70—270 МэВ/м.

Средний линейный пробег а-частицы зависит от ее энергии и От плотности вещества. В воздухе он равен нескольким сантимет­рам, в жидкостях и в живом организме — 10—100 мкм. После то­го как скорость a-частицы уменьшается до скорости молекуляр-но-теплового движения, она, захватив два электрона в веществе, превращается в атом гелия.

Ионизация и возбуждение являются первичными процессами. Вторичными процессами могут быть увеличение скорости молекулярно-теплового движения частиц вещества, характеристиче­ское рентгеновское излучение, радиолюминесценция, химиче­ские процессы.

Взаимодействие a-частиц с ядрами — значительно более ред­кий процесс, чем ионизация. При этом возможны ядерные реак­ции, а также рассеяние a-частиц.

Бета-излучение, так же как и a-излучение, вызывает иониза­цию вещества. В воздухе линейная плотность ионизации b-частицами может быть вычислена по формуле

где k ~ 4600 пар ионов/м, с — скорость света, а J — скорость b-частиц.

Кроме ионизации и возбуждения b-частицы могут вызывать и другие процессы. Так, например, при торможении электронов возникает тормозное рентгеновское излучение. Бета-частицы рас­сеиваются на электронах вещества, и их пути сильно искривля­ются в нем. Если электрон движется в среде со скоростью, превы­шающей фазовую скорость распространения света в этой среде, то возникает характерное черепковское излучение (излучение Черенкова—Вавилова).

При попадании b+-частицы (позитрона) в вещество с большой вероятностью происходит такое взаимодействие ее с электроном, в результате которого пара электрон — позитрон превращается в два g-фотона. Этот процесс, схема которого показана на рис. 27.4,_ называют аннигиляцией. Энергия каждого g-фотона, возникаю­щего при аннигиляции, оказывается не меньше энергии покоя электрона или позитрона, т. е. не менее 0,51 МэВ.

Несмотря на разнообразие процессов, приводящих к ослабле­нию излучения, можно приближенно считать, что интенсивность его изменяется по экспоненциальному закону, подобному (26.8). В качестве одной из характеристик поглощения b-излучения ве­ществом используют слой половинного ослабления, при прохож­дении через который интенсивность b-частиц уменьшается вдвое.

Можно считать, что в ткани организма b-частицы проникают на глубину 10—15 мм. Защитой от b-излучения служат тонкие алюминиевые, плексигласовые и другие экраны. Так, например, слой алюминия толщиной 0,4 мм или воды толщиной 1,1 мм уменьшает вдвое b-излучение от фосфора 3215 Р.

При попадании g-излучения в вещество наряду с процессами, ха­рактерными для рентгеновского излучения (когерентное рассеяние, эффект Комптона, фотоэффект, см. § 26.3), возникают и такие явле­ния, которые неспецифичны для взаимодействия рентгеновского излучения с веществом. К этим процессам следует отнести образова­ние пары электрон — позитрон, происходящее при энергии g-фотона, не меньшей суммарной энергии покоя электрона и позитрона (1,02 МэВ), и фотоядерные реакции, которые возникают при взаи­модействии g-фотонов больших энергий с атомными ядрами. Для возникновения фотоядерной реакции необходимо, чтобы энергия g-фотона была не меньше энергии связи, приходящейся на нуклон.

В результате различных процессов под действием g-излучения образуются заряженные частицы; следовательно, у-излучение также является ионизирующим.

Ослабление пучка g-излучения в веществе обычно описывают экспоненциальным законом (26.8). Линейный (или массовый) ко­эффициент ослабления можно представить как сумму соответст­вующих коэффициентов ослабления, учитывающих три основных процесса взаимодействия — фотоэффект, Комптон-эффект и обра­зование электрон-позитронных пар:

Эти основные процессы взаимодействия происходят с разной вероятностью, которая зависит от энергии g-фотона (рис. 27.5; кривая получена для свинца).

 

Как видно из рисунка, при малых энергиях основную роль играет фотоэффект, при средних — Комптон-эффект и при энергиях, больших 10 МэВ, — процесс об­разования пары электрон — позитрон.

Экспоненциальный закон ослабления пучка g-фотонов выпол­няется приближенно, особенно при больших энергиях. Это обус­ловлено вторичными процессами, возникающими при взаимодей­ствии g-излучения с веществом. Так, например, электроны и по­зитроны обладают энергией, достаточной для образования новых g-фотонов в результате торможения и аннигиляции.

Поток нейтронов тоже является ионизирующим излучением, так как в результате взаимодействия нейтронов с ядрами атомов образуются заряженные частицы и g-излучение. Проиллюстриру­ем это несколькими: примерами: — деление ядер при захвате ими нейтронов: образование ра­диоактивных осколков, g-излучения и заряженных частиц;— образование a-частиц, например:

— — образование протонов, например:

 

Детекторы ионизирующих излучений

Детекторами ионизирующих излучений называют прибо­ры, регистрирующие а-, (3-, рентгеновское и у-излучения, нейтро­ны, протоны и т. д. Детекторы используют также для измерения энергии частиц, изучения процессов их взаимодействия, распада и т. п.

Работа детекторов основана на тех процессах, которые вызыва­ют регистрируемые частицы в веществе.

С некоторой условностью детекторы могут быть представлены тремя группами: следовые (трековые) детекторы, счетчики и интегральные приборы.

Следовые детекторы позволяют наблюдать траекторию части­цы, счетчики регистрируют появление частицы в заданном про­странстве, интегральные приборы дают информацию о потоке ионизирующего излучения. Еще раз отметим условность этой классификации. Так, например, следовые детекторы можно ис­пользовать, чтобы сосчитать пролетающие частицы, от «поштуч­ной» регистрации частиц счетчиком можно перейти к суммарной оценке потока ионизирующего излучения и т. п.

К следовым детекторам относят камеру Вильсона, диффузион­ную, пузырьковую, искровую камеры и толстослойные фотоплас­тинки. Общность всех этих устройств заключается в том, что на­блюдаемая частица ионизирует молекулы или атомы вещества на своем пути. Образованные ионы проявляются по вторичным эф­фектам: конденсация пересыщенного пара (камера Вильсона и диффузионная); парообразование перегретой жидкости (пузырь­ковая камера); образование разрядов в газах (искровая камера); фотохимическое действие (толстослойные фотопластинки).

Так как многие из перечисленных методов знакомы читателю по курсу физики средней школы, то в качестве иллюстрации рас­смотрим лишь работу искровой камеры. Она состоит из электро­дов, пространство между которыми заполнено газом. Высоко­вольтное напряжение подается на электроды во время прохожде­ния частицей пространства камеры, сигнал для включения напряжения поступает с других детекторов. Электроны, возник­шие вдоль траектории частицы при ионизации атомов газа, ускоряются электрическим полем и производят сами ударную иониза­цию. В результате на небольших участках образуется видимый глазом искровой разряд.

На рис. 27.6 показана схема узкозазорной искровой камеры. Расстояние между электродами, помещенными в камеру (горизонтальные прямые на рис. 27.6), порядка 1 см. Искровые разря­ды возникают перпендикулярно электродам, их совокупность указывает траекторию частицы.

 

В стримерной1 искровой камере расстояние между электродами 5—20 см. Высоковольтное напря­жение снимается примерно через 10~5 с после прохождения части­цы. За это время искры зарождаются только в непосредственной области первичной ионизации, созданной регистрируемой час­тицей. Следы частиц в стримерной искровой камере изображены на рис. 27.7.

К интегральным детекторам можно отнести фотопленки (фик­сируется степень почернения после проявления пленки), иониза­ционные камеры непрерывного действия и др.

Рассмотрим устройство и работу ионизационной камеры непре­рывного действия. Она представляет собой конденсатор К, внутри которого находится газ (рис. 27.8). При попадании излучения в газ происходит ионизация и по цепи протекает электрический ток, который обычно усиливают и измеряют. Сила тока пропорци­ональна числу ионов, образованных в камере в секунду, и, следо­вательно, потоку энергии проходящих ионизирующих частиц.

В некоторых приборах разрядка конденсатора под действием ионизи­рующего излучения фиксируется элек­трометром.

К счетчикам относят большую группу газоразрядных устройств {им­пульсные ионизационные камеры, про­порциональные счетчики, счетчики Гейгера—Мюллера), а также люми­несцентные, полупроводниковые и др.

Проанализируем зависимость импуль­са тока I, возникающего при попадании частицы в газовый промежуток (число ионов, участвующих в одном импульсе), от напряжения U на электродах (рис. 27.9; кривые соответствуют а- и b-частицам).

Обе кривые могут быть условно пред­ставлены шестью областями, для которых характерны различные процессы.

В области / рекомбинации часть ионов рекомбинирует. С ростом напряжения число рекомбинирующих ионов уменьшается, увеличивается число ионов, которые дости­гают электродов. Так как ионизирующая способность а-частиц больше, чем b-частиц, то кривые для них различны.

Область II соответствует насыщению. Все первичные ионы до­ходят до электродов, но вторичной ионизации еще нет. В этой об­ласти работает ионизационная камера.

В области III начинает проявляться вторичная ионизация, од­нако импульс тока при этом остается пропорциональным началь­ной ионизации. Число N пар ионов, присутствующих после уси­ления, пропорционально числу No первичных пар ионов, образо­ванных ионизирующей частицей:

где k — коэффициент газового усиления (k = 103 + 106). Он зави­сит от конструкции счетчика и природы используемого в нем га­за. Именно в этой области работают пропорциональные счетчики.

Так как No и, следовательно, N зависят не только от вида час­тиц, но и от их энергии, то пропорциональные счетчики могут из­мерять и энергию частиц.

Область IV называют областью ограниченной пропорциональнос­ти. Здесь еще проявляется зависимость от начальной ионизации, но к значению U4 она уже пропадает. Значение U4, называемое порогом области Гейгера, зависит от конструкции счетчика, а также от давле­ния и вида газа, используемого в нем. В этой области импульс тока становится достаточно большим и при малой начальной ионизации.

В области V работают счетчики Гейгера—Мюллера. Здесь боль­шой коэффициент газового усиления, но нельзя различать энер­гии частиц.

В области VI возникает непрерывный газовый разряд, который приводит к быстрой порче счетчика. Области V и VI соответству­ют самостоятельному газовому разряду, который будет поддержи­ваться и после прекращения ионизирующего действия частицы.

В качестве примера газовых устройств рассмотрим счетчик Гейгера—Мюллера, он состоит из коаксиально расположенных цилиндрических электродов [рис. 27.10: 1 — анод (тонкая нить, натянутая вдоль оси), 2 — катод в виде напыленного на стек­лянную трубку 3 металла]. Давление газа внутри счетчика 100— 200 мм рт. ст. К электродам прикладывается напряжение поряд­ка нескольких сотен вольт. При попадании в счетчик ионизирую­щей частицы в газе образуются свободные электроны, которые движутся к аноду. Так как нить тонкая (диаметр около 0,05 мм), то вблизи нити электрическое поле сильно неоднородно, напря­женность поля велика. Электроны вблизи нити ускоряются на­столько, что начинают ионизовать газ. В результате возникает разряд, и по цепи (рис. 27.11) протекает ток.

Самостоятельный разряд в счетчике Гейгера—Мюллера необ­ходимо погасить, иначе счетчик не прореагирует на следующую частицу. Для гашения разряда применяют радиотехнический ме­тод и метод, основанный на добавлении в трубку многоатомных газов (самогасящиеся счетчики).

Простейшим вариантом первого метода является включение последовательно со счетчиком высокоомного резистора. При про­текании тока на этом резисторе происходит значительное падение напряжения, напряжение на счетчике уменьшается и разряд пре­кращается. Более распространены самогасящиеся счетчики, в ко­торых благодаря специальному газовому наполнению разряд сам собой обрывается даже при малых сопротивлениях цепи.

Электрические импульсы, возникающие во внешней цепи на резисторе, усиливают и регистрируют специальным устройством.

Принцип действия сцинтилляционного (люминесцентного) счет­чика основан на том, что под действием ионизирующего излучения в некоторых веществах происходят кратковременные вспышки света — сцинтилляции. На первом этапе развития ядерной физи­ки сцинтилляции регистрировались при визуальном наблюдении. В люминесцентном счетчике они регистрируются автоматически с использованием фотоэлектронного умножителя.

Полупроводниковые счетчики реагируют на изменение элек­тропроводимости р—n-перехода под воздействием заряженной час­тицы.

Как видно, все перечисленные выше детекторы работают тог­да, когда частицы производят ионизацию в определенном объеме. В связи с этим для регистрации а- и b-частиц стенки счетчиков или камер должны пропускать эти частицы. В отдельных случаях для регистрации а-излучения соответствующий источник поме­щается внутрь камеры, так как трудно сделать стенки камеры прозрачными для этих частиц.

Рентгеновское и у-излучения регистрируются благодаря иони­зации, которую вызывают заряженные частицы, образованные при фотоэффекте, Комптон-эффекте и т. д.

Счетчики должны удовлетворять некоторым общим требовани­ям, связанным с эффективностью, разрешающим временем и т. д. Эффективностью называют отношение числа зарегистрирован­ных частиц к общему числу частиц, пролетевших через счетчик. Разрешающим (или мертвым) временем счетчика называют ми­нимальное время, которое должно разделять следующие друг за другом частицы, чтобы они не были сосчитаны как одна.

 

1 Стримерами называют светящиеся разветвленные каналы, обра­зующиеся при электрическом разряде в газах.

 

 

§ 27.6. Использование радионуклидов и нейтронов в медицине

Медицинские приложения радионуклидов можно представить двумя группами. Одна группа — это методы, использующие ра­диоактивные индикаторы (меченые атомы) с диагностическими и исследовательскими целями. Другая группа методов основана на применении ионизирующего излучения радионуклидов для био­логического действия с лечебной целью. К этой же группе можно отнести бактерицидное действие излучения.

Метод меченых атомов заключается в том, что в организм вво­дят радионуклиды и определяют их местонахождение и актив­ность в органах и тканях. Так, например, для диагностирования заболевания щитовидной железы в организм вводят радиоактив; ный иод 12553J или 13153J, часть которого концентрируется в этой же­лезе. Счетчиком, расположенным поблизости от нее, фиксируют накопление иода. По скорости увеличения концентрации радио­активного иода можно делать диагностический вывод о состоянии щитовидной железы.

Рак щитовидной железы может давать метастазы в разные ор­ганы. Накопление радиоактивного иода в них может дать инфор­мацию о метастазах.

Для обнаружения распределения радионуклидов в разных ор­ганах тела используют гамма-топограф (сцинтиграф), который автоматически регистрирует распределение интенсивности радио­активного препарата. Гамма-топограф представляет собой скани­рующий счетчик, который постепенно проходит большие участки над телом больного. Регистрация излучения фиксируется, напри­мер, штриховой отметкой на бумаге. На рис. 27.12, а схематиче­ски показан путь счетчика, а на рис. 27.12, б — регистрационная карта.

Применяя радиоактивные индикаторы, можно проследить за обменом веществ в организме. Объемы жидкостей в организме трудно измерить непосредственно, метод меченых атомов позво­ляет решить эту задачу. Так, например, вводя определенное коли­чество радиоактивного индикатора в кровь и выдержав время для его равномерного распределения по кровеносной системе, можно по активности единицы объема крови найти ее общий объем.

Гамма-топограф дает сравнительно грубое распределение ис­точников ионизирующего излучения в органах. Более детальные сведения можно получить методом авторадиографии.

В этом методе на исследуемый объект, например биологиче-; скую ткань, наносится слой чувствительной фотоэмульсии. Со­держащиеся в объекте радионуклиды оставляют след в соответст­вующем месте эмульсии, как бы фотографируя себя (отсюда и на­звание метода). Полученный снимок называют радиоавтографом или авторадиограммой. На рис. 27.13 схематически показан слой I биологического препарата, содержащий радионуклиды (радиоактивные метки) и слой фотоэмульсии, в котором, после проявления, возникнут темные точки от ионизирующего излучения. В живой организм радиоактивные атомы вводятся в таком не­большом количестве, что ни они, ни продукты их распада не ока­зывают вреда организму.

Лечебное применение радионуклидов в основном связано с использованием g-излучения (гамма-терапия). Гамма-установка состоит из источника, обычно 60Со, и защитного контейнера, вну­три которого помещен источник; больной размещается на столе. Применение гамма-излучения высокой энергии позволяет разру­шать глубоко расположенные опухоли, при этом поверхностно расположенные органы и ткани подвергаются меньшему губи­тельному действию.

Терапевтическое применение имеют и а-частицы. Так как они обладают значительной линейной плотностью ионизации, то по­глощаются даже небольшим слоем воздуха. Поэтому использова­ние а-частиц в терапии (альфа-терапия) возможно лишь при их непосредственном контакте с организмом, либо при введении внутрь организма.

Характерным примером является радоновая терапия: мине­ральные воды, содержащие 22286Rn и его дочерние продукты (см. §27.1), используются для воздействия на кожу (ванна), органы пищеварения (питье), органы дыхания (ингаляция).

Еще одно лечебное применение а-частиц связано с использова­нием потока нейтронов. В опухоль предварительно вводят элемен­ты, ядра которых под действием нейтронов вступают в ядерную реакцию с образованием а-частиц. Облучая после этого больной орган потоком нейтронов, вызывают ядерную реакцию и, следо­вательно, образование а-частиц (например, реакции 105В + 10п —> 73Li + 42a или 63Li + 10n -> 31H +42a ).

Таким образом, a-частицы образуются прямо внутри органа, на который они должны оказать разрушительное воздействие. Можно ввести радиоактивный препарат в больной орган на острие иглы.

Существуют и другие приемы лечебного воздействия ионизи­рующим излучением радионуклидов и нейтронами.

 

 

§ 27.7. Ускорители заряженных частиц и их использование в медицине

Ускорителем называют устройство, в котором под дей­ствием электрических и магнитных полей формируется пу­чок заряженных частиц высокой энергии.

Различают линейные и циклические ускорители. В линейных ускорителях час­тицы движутся по прямолинейной траек­тории, в циклических — по окружности или спирали.

Наиболее известным циклическим ус­корителем является циклотрон (рис. 27.14), в котором под действием магнит­ного поля индукции В, направленной перпендикулярно плоскости рисунка, за­ряженная частица движется по окруж­ностям. Переменное электрическое поле между дуантами 1 ускоряет частицу. Согласно формуле (13.23), период Т вращения частицы не зависит от ее скорости и радиуса траектории, поэтому время прохождения частицей любой полуокружности в каждом дуанте одинаково. Оно соответствует половине периода колебаний электрического поля. Таким образом, магнитное поле обеспечивает вращение час­тицы по окружности, а электрическое поле — изменение ее кине­тической энергии. Источник частиц 2 находится вблизи центра циклотрона, пучок ускоренных частиц 3 вылетает из циклотрона после ускорения.

Циклотрон способен ускорять протоны до 20—25 МэВ. Ограни­чение энергии ускоряемых частиц обусловлено релятивистской зависимостью в формуле (13.23) массы1 от скорости, что приводит к увеличению периода вращения частицы с возрастанием ее ско­рости. В результате этого нарушится синхронность между движе­нием частицы и изменением электрического поля. Электрическое поле будет не ускорять, а замедлять частицы. В связи с этим в циклотроне нельзя ускорять электроны, так как они быстро до­стигают релятивистских скоростей.

Из этого затруднения можно найти выход, изменяя частоту электрического поля в соответствии с изменением периода враще­ния заряженной частицы. Такой ускоритель называют фазо­троном (синхроциклотроном), он способен ускорять протоны до энергии ~ ГэВ. Можно предположить и другое решение вопроса: по мере воз­растания массы увеличивать индукцию магнитного поля. Как видно из формулы (13.23), в этом случае можно сохранить период вра­щения частицы неизменным. Уско­ритель такого типа называют синх­ротроном.

Для ускорения тяжелых частиц до энергий порядка гигаэлектрон-вольт и выше используют синхрофа­зотрон, в котором изменяют и маг­нитное поле, и частоту электриче­ского поля.

Довольно распространенным ускорителем электронов невысо­ких энергий является бетатрон. В отличие от других цикличе­ских ускорителей в нем электрическое поле не подается от внеш­них источников, а создается при изменении магнитного поля (яв­ление электромагнитной индукции).

На рис. 27.15, а схематически показано, что при изменении магнитного поля электромагнита 1 возникает, согласно теории Максвелла, вихревое электрическое поле. В зазоре 2 магнита рас­положена вакуумная камера, в которой ускоряются электроны. Силовые линии электрического поля в виде концентрических ок­ружностей проходят в плоскости, перпендикулярной плоскости рис. 27.15, а. На рис. 27.15, б изображена отдельная линия на­пряженности электрического поля, которая приближенно совпа­дает с траекторией электрона. На этом рисунке линии вектора В в основном перпендикулярны плоскости чертежа, магнитная ин­дукция возрастает.

Электрон удерживается на орбите магнитным полем (сила Ло­ренца) и ускоряется электрическим.

Бетатроны способны ускорять электроны до десятков мегаэлектрон-вольт. В настоящее время бетатроны используют глав­ным образом в прикладных целях, в том числе и медицинских. Остановимся на медицинских приложениях ускорителей. Ускорители заряженных частиц применяют как средство лучевой терапии в двух основных направлениях.

Во-первых, используют тормозное рентгеновское излучение, возникающее при торможении электронов, ускоренных бетатро­ном. Использование тормозного излучения оказывается более эф­фективным, чем гамма-терапия.

Во-вторых, используют прямое действие ускоренных частиц: электронов, протонов. Электроны ускоряются бетатроном, а про­тонный пучок получают от других ускорителей.

Как видно из рис. 27.3, заряженные частицы, в том числе и протоны, наиболь­шую ионизацию производят перед остановкой. Поэтому при попа­дании пучка протонов в биологический объект извне наибольшее воздействие будет оказано не на поверхностные слои, а на опухо­левые ткани, которые расположены в глубине организма. В этом основная выгода применения заряженных частиц для лучевой те­рапии глубинных опухолей. Поверхностные слои в этом случае повреждаются минимально.

Малое рассеяние протонов позволяет формировать узкие пуч­ки и, таким образом, очень точно воздействовать на опухоль. На­ряду с лечебным применением ускорителей в последние годы от­крылись возможности использования их в диагностике. Здесь можно указать две области.

Одна — ионная медицинская радиография. Суть метода заклю­чается в следующем. Пробег тяжелых заряженных частиц (а-частицы, протоны) зависит от плотности вещества. Поэтому если ре­гистрировать поток частиц до и после прохождения объекта, то можно получить сведения о средней плотности вещества.

Таким образом, так же как и при рентгенографии, возможно различать структуры большей и меньшей плотности. Преимуще­ство у этого метода перед рентгенографией — более низкая кон­трастность, что позволяет лучше различать структуру мягких тка­ней.

Другая область применения связана с синхротронным излуче­нием.

Синхротронным излучением называют интенсивное ультра­фиолетовое и мягкое рентгеновское излучение, которое испуска­ют электроны, движущиеся по круговой орбите со скоростями, близкими к скорости света. Впервые это излучение как световое наблюдалось на синхротронах, поэтому оно и называется синх­ротронным. Синхротронное излучение в целях диагностики при­меняют аналогично обычному рентгеновскому излучению. Одно из преимуществ синхротронного излучения перед рентгеновским заключается в возможности поглощения этого излучения преиму­щественно некоторыми элементами, например иодом, который может иметь повышенную концентрацию в тканях. Отсюда воз­никают условия для ранней диагностики злокачественных опухо­лей.

Отметим, что синхротронное излучение начинают также при­менять и в лучевой терапии.

 

 

1 В настоящее время в физической литературе принято использовать релятивистскую зависимость импульса от скорости частицы. Здесь эти подробности не рассматриваются.

ГЛАВА 28

 

Элементы дозиметрии ионизирующих излучений

Необходимость количественной оценки действия ионизи­рующего излучения на различные вещества живой и неживой природы привела к появлению дозиметрии. Дозиметрией называют раздел ядерной физики и измери­тельной техники, в котором изучают величины, характери­зующие действие ионизирующего излучения на вещества, а также методы и приборы для их измерения. Первоначально развитие дозиметрии было обусловлено необходимостью учета действия рентгеновского излучения на человека.

 

§ 28.1. Доза излучения и экспозиционная доза. Мощность дозы

Уже отмечалось, что ионизирующее излучение только тогда оказывает действие на вещество, когда это излучение взаимодей­ствует с частицами, входящими в состав вещества.

Независимо от природы ионизирующего излучения его взаи­модействие количественно может быть оценено отношением энер­гии, переданной элементу облученного вещества, к массе этого элемента. Эту характеристику называют дозой излучения (по­глощенной дозой излучения) D.

Различные эффекты ионизирующего излучения прежде все­го определяются поглощенной дозой. Она сложным образом за­висит от вида ионизирующего излучения, энергии его частиц, состава облучаемого вещества и пропорциональна времени об­лучения. Дозу, отнесенную ко времени, называют мощностью дозы.

Единицей поглощенной дозы излучения является грей (Гр), который соответствует дозе излучения, при которой облучен­ному веществу массой 1 кг передается энергия ионизирующе­го излучения 1 Дж; мощность дозы излучения выражается в грeях в секунду (Гр/с).

Внесистемная единица дозы излучения —рад1 (1 рад = 10~2 Гр = 100 эрг/г), ее мощности —рад в секунду (рад/с).

Казалось бы, для нахождения поглощенной дозы излучения следует измерить энергию ионизирующего излучения, падающего на тело, энергию, прошедшую сквозь тело, и их разность разде­лить на массу тела. Однако практически это сделать трудно, так как тело неоднородно, энергия рассеивается телом по всевозмож­ным направлениям и т. п. Таким образом, вполне конкретное и яс­ное понятие «дозы излучения» оказывается малопригодным в экс­перименте. Но можно оценить поглощенную телом дозу по иони­зирующему действию излучения в воздухе, окружающем тело.

В связи с этим вводят еще одно понятие дозы для рентгенов­ского и g-излучения — экспозиционную дозу излучения X, ко­торая является мерой ионизации воздуха рентгеновскими и g-лучами.

За единицу экспозиционной дозы принят кулон на килограмм (Кл/кг). На практике используют единицу, называемую рентге­ном (Р), — экспозиционная доза рентгеновского или g-излучения, при которой в результате полной ионизации в 1 см3 сухого возду­ха (0,001293 г) при 0 °С и 760 мм рт. ст. образуется 2,08 • 10? пар ионов. 1 Р = 2,58 • 10"4 Кл/кг.

Единицей мощности экспозиционной дозы является 1 А/кг, а внесистемной единицей — 1 Р/с.

Так как доза излучения пропорциональна падающему ионизи­рующему излучению, то между ней и экспозиционной дозой должна быть пропорциональная зависимость

где f — некоторый переходный коэффициент, зависящий от ряда причин и прежде всего от облучаемого вещества и энергии фото­нов.

Наиболее просто установить значение коэффициента f, если облучае­мым веществом является воздух. При X — 1 Р в 0,001293 г воздуха об­разуется 2,08 • 109 пар ионов; следовательно, в 1 г воздуха содержится 2,08 • 109/0,001293 пар ионов. В среднем на образование одной пары ионов расходуется энергия 34 эВ. Это означает, что в 1 г воздуха погло­щается энергия излучения, равная

2,08*109/0.001293 • 34 • 1,6 • 10-19Дж/г = 88 • 10 4Дж/кг. 0,001293

Итак, поглощенная доза 88 • 10 4 Дж/кг в воздухе энергетически эквивалентна 1 Р. Тогда по формуле (28.1) имеем

если D измеряется в радах, а X — в рентгенах.

Коэффициент f для воздуха мало зави­сит от энергии фотонов.

Для воды и мягких тканей тела челове­ка f = 1; следовательно, доза излучения в радах численно равна соответствующей экспозиционной дозе в рентгенах. Это и обусловливает удобство использования внесис­темных единиц — рада и рентгена.

Для костной ткани коэффициент f уменьшается с увеличением энергии фотонов приблизительно от 4,5 до 1.

Установим связь между активностью радиоактивного препара­та — источника g-фотонов — и мощностью экспозиционной дозы. Из источника И (рис. 28.1) у-фотоны вылетают по всем направле­ниям. Число этих фотонов, пронизывающих 1 м2 поверхности не­которой сферы в 1 с, пропорционально активности А и обратно пропорционально площади поверхности сферы (4pr2). Мощность экспозиционной дозы (X/t) в объеме V зависит от этого числа фото­нов, так как именно они и вызывают ионизацию. Отсюда получаем

где k — гамма-постоянная, которая характерна для данного ра­дионуклида.

 

 

1 Единица рад является аббревиатурой английских слов Radiation Ab­sorbed Dose.

 

 

§ 28.2. Количественная оценка биологического действия ионизирующего излучения. Эквивалентная доза

Для данного вида излучения биологическое действие обычно тем больше, чем больше доза излучения. Однако различные излу­чения даже при одной и той же поглощенной дозе оказывают раз­ные воздействия.

В дозиметрии принято сравнивать биологические эффекты различных излучений с соответствующими эффектами, вызван­ными рентгеновским и g-излучениями.

Коэффициент К, показывающий, во сколько раз эффектив­ность биологического действия данного вида излучения больше, чем рентгеновского или g-излучения, при одинаковой дозе излу­чения в тканях, называется коэффициентом качества. В радио­биологии его называют также относительной биологической эффективностью (ОБЭ).

Коэффициент качества устанавливают на основе опытных дан­ных. Он зависит не только от вида частицы, но и от ее энергии. Приведем приближенные значения К (табл. 33) для некоторых излучений (в скобках указана энергия частиц).

Таблица 33

Поглощенная доза совместно с коэффициентом качества дает представление о биологическом действии ионизирующего излуче­ния, поэтому произведение DK используют как единую меру это­го действия и называют эквивалентной дозой излучения Н:

Так как К — безразмерный коэффициент, то эквивалентная доза излучения имеет ту же размерность, что и поглощенная доза излучения, но называется зивертом (Зв). Внесистемная единица эквивалентной дозы — бэр1, 1 бэр = 10~2 Зв.

Эквивалентная доза в бэрах равна дозе излучения в радах, ум­ноженной на коэффициент качества.

Естественные радиоактивные источники (космические лучи, радиоактивность недр, воды, радиоактивность ядер, входящих в состав человеческого тела, и др.) создают фон, соответствующий приблизительно эквивалентной дозе 125 мбэр в течение года. Пре­дельно допустимой эквивалентной дозой при профессиональном облучении считается 5 бэр в течение года. Минимальная леталь­ная доза от у-излучения около 600 бэр. Эти данные соответствуют облучению всего организма.

 

 

1 Бэр — аббревиатура слов «биологический эквивалент рентгена».

 

§ 28.3. Дозиметрические приборы

Дозиметрическими приборами, или дозиметрами называ­ют устройства для измерения доз ионизирующих излучений или величин, связанных с дозами.

Конструктивно дозиметры состоят из детектора ядерных излу­чений и измерительного устройства. Обычно они проградуированы в единицах дозы или мощности дозы. В некоторых случаях предусмотрена сигнализация о превышении заданного значения мощности дозы.

В зависимости от используемого детектора различают дозимет­ры ионизационные, люминесцентные, полупроводниковые, фото­дозиметры и др.

Дозиметры могут быть рассчитаны на измерение доз како­го-либо определенного вида излучения или регистрацию смешан­ного излучения.

Дозиметры для измерения экспозиционной дозы рентгеновско­го и у-излучения или ее мощности называют рентгенометрами. В качестве детектора у них обычно применяется ионизацион­ная камера. Заряд, протекающий в цепи камеры, пропорциона­лен экспозиционной дозе, а сила тока — ее мощности. На рис. 28.2 показан микрорентгенометр МРМ-2 со сферической иониза­ционной камерой, вынесенной отдельно от прибора.

Состав газа в ионизационных камерах, а также вещество сте­нок, из которых они состоят, подбирают такими, чтобы осуществ­лялись тождественные условия с поглощением энергии в биологи­ческих тканях.

На рис. 28.3 показан комплект индивидуальных дозиметров ДК-0,2 с общим измерительным устройством. Каждый индивиду­альный дозиметр представляет собой миниатюрную цилиндрическую ионизационную камеру, которая предварительно заряжает­ся. В результате ионизации происходит разрядка камеры, что фиксируется вмонтированным в нее электрометром. Показания его зависят от экспозиционной дозы ионизирующего излучения.

Существуют дозиметры, детекторами которых являются газо­разрядные счетчики.

Для измерения активности или концентрации радиоактивных изотопов применяют приборы, называемые радиометрами. Принцип их работы в основном изложен в § 27.5.

В заключение заметим, что общая структурная схема всех до­зиметров аналогична той, которая изображена на рис. 17.1. Роль датчика (измерительного преобразователя) выполняет детектор ядерных излучений. В качестве выходных устройств могут ис­пользоваться стрелочные приборы, самописцы, электромеханиче­ские счетчики, звуковые и световые сигнализаторы и т. п.

 

 

§ 28.4. Защита от ионизирующего излучения

Работа с любыми источниками ионизирующих излучений тре­бует защиты персонала от их вредного действия. Это большая и специальная проблема, в значительной степени выходящая за пределы чисто физических вопросов. Рассмотрим кратко некото­рые аспекты этой проблемы.

Различают три вида защиты: защита временем, расстоя­нием и материалом.

Проиллюстрируем первые два вида защиты на модели точечно­го источника у-излучения. Преобразуем формулу (28.2):

Отсюда видно, что чем больше время и чем меньше расстояние, тем больше экспозиционная доза. Следовательно, необходимо на­ходиться под воздействием ионизирующего излучения минималь­ное время и на максимально возможном расстоянии от источника этого излучения.

Защита материалом основывается на различной способности веществ поглощать разные виды ионизирующего излучения.

Защита от а-излучения проста: достаточно листа бумаги или слоя воздуха толщиной в несколько сантиметров, чтобы полно­стью поглотить а-частицы. Однако, работая с радиоактивными источниками, следует остерегаться попадания ос-частиц внутрь организма при дыхании или приеме пищи.

Для защиты от b-излучения достаточно пластин из алюминия, плексигласа или стекла толщиной в несколько сантиметров. При взаимодействии b-частиц с веществом может появиться тормоз­ное рентгеновское излучение, а от b+-частиц — b+-излучение, воз­никающее при аннигиляции этих частиц с электронами. Наибо­лее сложна защита от «нейтрального» излучения: рентгеновское и у-излучения, нейтроны. Эти излучения с меньшей вероятностью взаимодействуют с частицами вещества и поэтому глубже прони­кают в вещество. Ослабление пучка рентгеновского и у-излучений приближенно соответствует закону (26.8). Коэффициент ослабле­ния зависит от порядкового номера элемента вещества поглотите­ля [см. (26.12)] и от энергии у-фотонов (см. рис. 27.5). При расчете защиты учитывают эти зависимости, рассеяние фотонов, а также вторичные процессы. Некоторые из них для рентгеновского излу­чения показаны на рис. 26.10. Защита от нейтронов наиболее сложна. Быстрые нейтроны сначала замедляют, уменьшая их скорость в водородсодержащих веществах. За


<== предыдущая страница | следующая страница ==>
Степень следования местным обычаям | Термодинамика изучает общие законы, определяющие превращения энергии

Дата добавления: 2015-07-26; просмотров: 472; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.032 сек.