Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Конструктивные факторы

Масштабный эффект. Механическую прочность стали и ее работоспособность обычно определяют в лабораторных условиях на образцах малых размеров по сравнению с действительными изделиями. Эти данные используют для оценки пригодности стали и для расчета конструкций.

Однако, в действительности существуют расхождения механических свойств конкретных изделий и образца даже при соблюдении подобия геометрических размеров и условий испытания с условиями эксплуатации. Эти явления называют масштабным эффектом или масштабным фактором.

Увеличение размеров детали способствует стеснению пластического течения, которое возрастает по мере удаления от ее свободной поверхности. В центральной части крупных изделий может развиваться объемное напряженное состояние, близкое к равномерному трехосному растяжению. Разрушение таких изделий, по крайней мере в центральной части, носит хрупкий характер.

Следует также иметь в виду, что появление дефектов в материале подчиняется вероятностным законам, вследствие чего прочность имеет статистическую природу. Чем больше размер образца, тем больше опасность присутствия в нем опасных дефектов, развития ликвации, пористости, различия в размерах зерен, меньшей степени проработки структуры при ковке, прокате или термической обработке. Так, например, из-за слабой прокаливаемости в больших сечениях критическая температура хрупкости может повышаться на 20 °С и более. Все это увеличивает склонность к хрупким разрушениям.

Типичная кривая зависимости коэффициента интенсивности напряжений от размеров образцов представлена на рис. 13.11. Видно, что для геометрически подобных образцов с увеличением размеров происходит ассимптотический переход от больших значений Kc к меньшим. С увеличением толщины образца температурная зависимость Kc смещается в область более высоких температур. Кроме того, с увеличением размера детали d происходит уменьшение доли поверхностной энергии в общем балансе энергий, так как накапливаемая упругая энергия растет пропорционально d 3, а поверхностная энергия — d 2. Поэтому масштабный фактор проявляется не только в ужесточении напряженного состояния и воздействии на структуру, но и в увеличении способности системы к накоплению избыточной энергии упругой деформации.

Рис. 13.11. Зависимость вязкости разрушения
от толщины образца

Концентраторы напряжения. Влияние конструктивных концентраторов напряжений (надрезы, выточки, переходы, шейки и т. д.) оказывают существенное влияние на прочность, характер разрушения и надежность изделий.

Анализ причин хрупких разрушений показывает, что трещины обычно начинаются от надрезов, являющихся концентраторами напряжений. Надрезом является любое нарушение непрерывности металла. К надрезам относятся дефекты сварных соединений (пористость, непровар, пустоты по сечению шва), поверхностные царапины, неметаллические включения, газовые раковины. В месте надреза пластическая деформация стеснена, что приводит к увеличению сопротивления пластической деформации, т. е. к росту σт. Чем острее и глубже надрез, тем больше стеснена пластическая деформация, тем выше σт. Под влиянием надрезов металл разрушается хрупко при более высокой температуре (табл. 13.3). Чувствительность к концентрации напряжений является важной характеристикой надежности материала, по которой более прочный металл чаще уступает менее прочному.

Таблица 13.3

Влияние остроты надреза на температуру
перехода стали в хрупкое состояние

Тип образца Температура перехода, °С
15ХСНД Ст3сп Ст3кп
Стандартный надрез R = 1 мм –80 –60 –20
Острый надрез R = 0,25 мм –20 –10

Чем острее надрез, тем выше концентрация напряжений, тем больше опасность хрупкого разрушения.

Известен случай разрушения сферического резервуара диаметром 11,735 м с толщиной стенок 15,8 мм, служившего для хранения сжатого водорода. Авария произошла при температуре минус 18 °С. Трещины шли по сварным швам. Возле места приварки лаза к сфере наблюдался ряд небольших трещин, возникших в процессе изготовления, которые и послужили, по мнению автора, очагами разрушения. В связи с этим автор указывал, что опасность разрушения при низких температурах особенно сильно возрастает при одновременном сочетании концентрации напряжений, пороков сварки или дефектов материала и больших остаточных напряжений.

При хрупких разрушениях очаги трещин обычно возникают в местах концентрации напряжений. Особенно опасно действие конструктивных концентраторов напряжений в сочетании с местными напряжениями, вызванными сосредоточенным приложением нагрузки или остаточными напряжениями.

Совместное действие остаточных напряжений и концентраторов привело к аварии грузового судна CIM, которое строилось в Стурджоне (США): разрушился стыковой шов обшивки, разрушение распространилось в обоих направлениях на длину около 3 м. Начальной точкой разрушения было пересечение шва обшивки со стыковым швом в настиле двойного дна, сваренного несколько раньше. В результате несоблюдения последовательности сварочных операций возникли объемные остаточные напряжения, которые и обусловили переход соединения в хрупкое состояние. Резкое снижение температуры с 2 до –18 °С привело к аварии (сварка –– 1 января, авария –– 4 января).


<== предыдущая страница | следующая страница ==>
Термоциклирование | Основные признаки хрупкого и вязкого разрушения

Дата добавления: 2015-07-26; просмотров: 162; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.003 сек.