Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




ТОПЛИВНЫЕ НАСОСЫ ВЫСОКОГО ДАВЛЕНИЯ

Чтобы лучше понять устройство и принцип действия топливных насосов высокого давления, рассмотрим сначала принципиальную схему насоса (рис. 73).

Рис. 73. Схема действия топливного насоса высокого давления

Внутри неподвижной гильзы помещен подвижной плунжер. Плунжер — это поршень, длина которого значительно превышает диаметр. Вместе эти детали —- гильза и плунжер — образуют плунжерную пару. Плунжер подобран к гильзе или притерт к ее стенкам так плотно, что утечки топлива между ними почти не происходит. Зазор между плунжером и гильзой не превышает обычно 1,5—4 мкм, что в 50—100 раз меньше диаметра волоса человека. Трубопровод, подходящий к окну А гильзы, всегда заполнен топливом.
Проследим, как плунжер такого насоса подает топливо. Когда плунжер находится в нижнем положении, топливо через окно А заполняет пространство над плунжером (рис. 73, а). При вращении кулачкового вала привода топливного насоса кулачок набегает на ролик толкателя (рис. 73, б), плунжер начинает двигаться вверх и верхней кромкой а постепенно закрывает окно А. При этом нагнетательный клапан, прижатый к своему седлу пружиной, испытывает снизу давление топлива, вытесняемого плунжером, а сверху — усилие пружины и давление топлива, оставшегося в трубопроводе. Пока усилие на клапан, создаваемое давлением топлива, меньше усилия, создаваемого пружиной, клапан закрыт и часть топлива, не имея другого выхода, устремится из надплунжерного пространства обратно в окно 4 (см. рис. 73, б). Когда плунжер кромкой а полностью закроет окно А (рис. 73, в), вытекание топлива через него прекратится. Примерно с этого момента при продолжающемся ходе плунжера вверх начнется нагнетание: давление топлива преодолеет усилие пружины нагнетательного клапана, он откроется, и топливо будет через трубопровод поступать в форсунку до тех пор, пока плунжер не достигнет своего крайнего положения (рис. 73, г). Когда плунжер начинает двигаться вниз, прекращается подача топлива. Нагнетательный клапан под действием пружины снова садится на свое седло. Сбегая с выступа кулачка, ролик вместе с толкателем и плунжером возвращается в первоначальное положение (см. рис. 73, а).
Если бы дизель всегда работал только на одной постоянной мощности, то рассмотренный нами топливный насос вполне удовлетворял бы требованиям работы на дизеле, так как за один ход плунжера он подает одно и тоже количество топлива, необходимое для получения нужной мощности. Количество топлива, подаваемого таким насосом, постоянно потому, что высота кулачка, а следовательно, и ход плунжера являются величинами постоянными, а начало и конец нагнетания топлива, определяемые ходом плунжера в процессе работы, как мы видим, при такой конструкции не могут быть изменены.
Однако условия работы тепловоза, как уже указывалось, требуют, чтобы мощность дизеля могла изменяться. Дизель, как и всякий транспортный двигатель внутреннего сгорания, должен быть приспособлен к переменному режиму работы локомотива.

Рис. 74. Форма головок плужнера

Мощность дизеля зависит от количества впрыскиваемого в цилиндры топлива. Чем больше топлива поступит в цилиндр во время рабочего хода, тем большую мощность будет развивать дизель. Поэтому нужно чтобы топливный насос при необходимости позволял изменять количество топлива, подаваемого в течение одного хода плунжера в каждый из цилиндров дизеля, соответственно его нагрузке.
В самом деле, при наибольшей мощности 2200 кВт (3000 л.с.) и максимальной частоте вращения коленчатого вала (850 об/мин) дизель 10Д100 расходует в среднем 8,25 кг топлива в минуту (495 кг в час). Очевидно, за один оборот вала (дизель двухтактный) расход топлива всеми десятью цилиндрами дизеля составит 8,25:850=0,0097 кг.
Подача топлива в цилиндр одним насосом за один оборот вала будет в 20 раз меньше (на каждый цилиндр установлены два топливных насоса), т. е. 0,00048 кг, или 0,48 г. При минимальной подаче топлива, когда коленчатый вал делает 400 об/мин и вращается вхолостую, подача топлива одним насосом может сократиться до 0,07 г, т. е. за цикл почти в семь раз меньше, чем в первом случае (при 850 об/мин).
Каким же образом можно изменять (регулировать) количество подаваемого топлива, не усложняя слишком конструкцию топливного насоса? Наиболее просто изменение подачи топлива в таком диапазоне решается путем изменения активного хода плунжера. Для этого конструкцию верхней части плунжера, называемую головкой, надо изменить. На некотором расстоянии от верхней кромки плунжера сделаем поперечную кольцевую выточку (рис а). Теперь как показано на рис.б, в головке плунжера прорежем и вертикальный сквозной паз. После этого часть металла головки уберем таким образом, чтобы на ней образовался специальный косой срез—со спиральной (винтовой) кромкой О. В результате головка плунжера примет вид, изображенный на рис. в.
Если окрасить головку плунжера и катить ее по плоскости, то на ней останется след от поверхности (и кромок) плунжера.

Рис. 75. Развертка головки плужнеоа

Этот след является поверхностью цилиндра, развернутого на плоскости, или просто разверткой. Развертка рабочей поверхности головки плунжера представляет собой прямоугольник, один угол которого срезан. Срез соответствует спиральной кромке О и является прямой линией ей. Спиральная кромка О плунжера имеет большое значение, так как она является регулирующей. С ее помощью можно изменять количество топлива, подаваемого плунжером. Посмотрим, как это происходит. Количество подаваемого топлива зависит от положения, которое занимает регулирующая кромка О относительно окна А (рис. 76) гильзы плунжера. В самом деле, топливо начнет подаваться после того, как верхний торец плунжера перекроет окно А, а прекращение подачи соответствует моменту, когда плунжер, продолжая двигаться вверх, своей спиральной кромкой откроет это окно. Нетрудно, однако, сообразить, что если наш плунжер будет лишен возможности поворачиваться вокруг своей вертикальной оси, то кромка О никогда не сможет регулировать величину подачи топлива, так как она будет открывать окно А одним и тем же участком. Следовательно, при одном поступательном движении плунжера спиральная кромка О не решает задачи.

Рис. 76. Схемы различных положений плунжера в гильзе

Для того чтобы изменить подачу топлива насосом, нужно заставить плунжер повернуться на некоторый угол так, чтобы против окна оказался другой участок головки. Задача осложняется тем, что повернуть плунжер нужно «на ходу», т. е. во время возвратно-поступательного перемещения заставить плунжер участвовать одновременно в двух разных движениях: поступательном (вверх, вниз вдоль оси В—В, рис. 76) и вращательном (вокруг оси В—В).
Как мы уже видели, поступательное движение плунжеру насоса сообщает кулачок (см. рис. 73). Поворот же его осуществляется с помощью специального механизма через выступ (поводок) плунжера. На рис. 76 показаны различные положения плунжера, соответствующие нулевой, частичной и полной подаче топлива плунжером.
Чтобы лучше понять, как происходит изменение количества подаваемого топлива с помощью спиральной кромки, зададим себе такой вопрос: при каком положении плунжера насос вовсе не будет подавать топливо? Мы уже знаем, что вертикальный паз соединяет надплунжерное пространство с кольцевой выточкой. Следовательно, топливо всегда заполняет не только надплунжерное пространство, но и вертикальный паз и кольцевую выточку. Если повернуть плунжер так, что вертикальный паз расположится прямо против окна А в гильзе, то, как это видно из рис. 76, а, при движении плунжера вверх топливо просто будет вытекать (перепускаться) через окно Л и ни одна капля его не попадет в нагнетательный трубопровод.
Теперь повернем плунжер вокруг оси В—В по часовой стрелке так, чтобы окно А было изолировано от вертикального паза (рис. 76, б). В этом случае хотя в пазу и есть топливо, но попасть в окно А оно может только, пройдя через полость б, когда кромка О приоткроет окно А. Плунжер при этом поднимется на величину h1 объем вытесненного в цилиндр топлива будет равен площади поперечного сечения плунжера, умноженной на расстояние h1. Дальнейшее движение плунжера вверх происходит вхолостую, так как вытесняемое топливо перепускается через окно А.
Если плунжер повернуть еще больше (рис. 76, в), то полезный ход его увеличится и станет равным h2. Соответственно увеличится и объем топлива, вытесненного плунжером и поданного через форсунку в цилиндр. Таким образом, каждому значению мощности дизеля соответствует определенное положение спиральной кромки О плунжера относительно окна гильзы. При увеличении мощности дизеля плунжер будет поворачиваться по часовой стрелке, и подача топлива увеличится до нужной величины. Уменьшение нагрузки будет сопровождаться поворотом плунжера в обратном направлении. Чем больше угол, на который повернется плунжер по часовой стрелке, тем позднее спиральная кромка откроет окно А, тем больше топлива будет подано плунжером за один ход и тем меньше топлива уйдет обратно через окно А.
Итак, изменение величины подачи топлива производится поворотом плунжера. Практически для изменения подачи топлива от нуля до максимума плунжер достаточно повернуть на 1/4 оборота.
Возникает вопрос: каким же образом производится поворот плунжера вокруг вертикальной оси В—В во время его хода?

Рис.77. Разрез секции топливного насоса тепловозного дизеля Д50

Ведь число ходов плунжера в современных насосах доходит до 1000 в минуту и более.
Рассмотрим вкратце конструкцию секции насоса, установленного на дизелях Д50, 2Д50, ПД1. Этот насос имеет шесть секций (по числу цилиндров дизеля), которые устроены одинаково. Главными деталями каждой секции, обслуживающей отдельную форсунку, являются знакомая нам плунжерная пара — плунжер и его гильза, а также нагнетательный клапан с пружиной и седлом.
Пружина прижимает клапан к седлу. Гильза плунжера укреплена в корпусе секции неподвижно, причем седло нагнетательного клапана опирается на верхний торец гильзы. Соприкасающиеся поверхности седла клапана и гильзы плунжера притираются, поэтому в этом месте создается надежное уплотнение и пропуск топлива при работе исключается.
Из предыдущего известно, что изменение подачи топлива насосом достигается поворотом плунжера. Конструктивно это выполнено так. На гильзу плунжера снизу надевается еще одна гильза, называемая поворотной. Чтобы эту гильзу можно было поворачивать, она имеет вверху зубчатый венец (сектор). Сектор находится в зацеплении с зубчатой рейкой, соединенной механизмом (состоящим из рычагов и тяг) с регулятором частоты вращения коленчатого вала. При перемещении рейки ее зубья заставляют поворачиваться поворотную гильзу. А как передается вращение плунжеру насоса?
На рис. 77 видно, что плунжер насоса снабжен в нижней части выступом-поводком, похожим на прямоугольную пластинку. В свою очередь поворотная гильза имеет здесь прямоугольные прорези (пазы),в которые входит выступ-поводок плунжера. Поворачиваясь, гильза упирается в поводок плунжера, заставляя и его поворачиваться. Но мы знаем, что плунжер должен поворачиваться «на ходу», т. е. он должен одновременно свободно перемещаться вверх и вниз. Не препятствуют ли этому перемещению вырезы в поворотной гильзе? Нет, этого не происходит, так как пазы сделаны достаточно глубокими и позволяют плунжеру вместе с его выступом свободно перемещаться, не выходя из них.
В зависимости от направления хода зубчатой рейки поворотная гильза поворачивается в одну или другую сторону. Нижний конец плунжера, как это видно из рис. 77, оканчивается пуговкой, на которую сверху опирается шайба. Пуговка упирается в дно стакана — детали, напоминающей обычный стакан. Пружина прижимает плунжер ко дну стакана. Перемещение стакана ограничивается стопорным кольцом. Подвод топлива в надплунжерное пространство осуществляется через оба окна А в гильзе плунжерной пары, а отсечка (перепуск) — через одно. Как видно из рис. 78, все шесть секций рассмотренного насоса установлены на одном картере, в котором смонтирован и кулачковый вал. Картер служит остовом всего насоса. Привод кулачкового вала от коленчатого вала дизеля осуществляется с помощью цилиндрических зубчатых колес.

Рис. 78. Общий вид топливного насоса дизелей Д50

В отличие от рассмотренной конструкции секции топливных насосов других дизелей, например типа 10Д100, не имеют отдельного общего остова и укрепляются непосредственно в блоке дизеля. На этих дизелях всего имеется 20 индивидуальных топливных насосов (по два насоса на один цилиндр). Кроме того, их плунжеры в отличие от плунжеров насосов дизелей типа Д50 при нагнетании топлива движутся сверху вниз, так как кулачковый вал расположен также в блоке дизеля, но выше плоскости установки насосов на расстоянии примерно 32 см. Чтобы передать движение от кулачкового вала плунжеру индивидуального топливного насоса, приходится между ними (валом и насосом) размещать особое устройство, именуемое толкателем (рис.79). Главными деталями его являются шток, ролик и возвратная пружина. Кулачки кулачкового вала нажимают на головку штока через ролик; при этом нижний конец штока (наконечник) давит на торец хвостовика плунжера топливного насоса. Обратное движение штока (подъем) осуществляется возвратной пружиной. Корпус топливного насоса и корпус толкателя соединены между собой и с блоком дизеля двумя болтами.


<== предыдущая страница | следующая страница ==>
РАСПЫЛИВАНИЕ ТОПЛИВА | ФОРСУНКИ

Дата добавления: 2015-07-26; просмотров: 642; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.003 сек.