Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Особенности окисления жирных кислот с нечетным числом атомов углерода и ненасыщенных жирных кислот

Окислительный распад жирных кислот с нечетным числом атомов углерода идет также путем b-окисления, но на заключительном этапе из этих соединений образуется пропионил-КоА, имеющий в своем составе 3 атома углерода. Пропионил-КоА не может ни окисляться путем b-окисления - необходимо соединение минимум с 4 атомами углерода, ни окисляться в цикле Кребса, поскольку в него могут поступать лишь двухуглеродные остатки ацетила.

В клетках существует специальный путь окисления пропионил-КоА, в ходе которого могут окисляться и пропионил-КоА, образующиеся при окислении углеродных скелетов некоторых аминокислот:

АТФ АДФ+Ф

і СН3

+СО2 А——————Щ і

СН3-СН2-СО~S-KoA ————————————————> СООН-СН-СО~S-KoA ———>

(Пропионил-КоА) Пропионил-КоА- ( Метилмалонил-КоА)

карбоксилаза

————————————————> СООН-СН2-СН2-СО~КоА —————> Цикл Кребса

Метилмалонил-КоАмутаза ( Сукцинил-КоА )

 

 

Фермент пропионил-КоА-карбоксилаза является биотин-зависимым ферментом. В свою очередь в структуру метилмалонил-КоА - мутазы входит кобамидный кофактор; поэтому при недостатке в организме витамина В12 нарушается превращение метилмалонил-КоА в сукцинил-КоА и с мочой начинает выделяться повышенное количество и пропионата, и метилмалоната. Определение содержания этих соединений в моче представляет собой ценный тест для диагностики В12-дефицитных состояний.

При окислении ненасыщенных жирных кислот, например, олеиновой или пальмитоолеиновой, имеющаяся в их составе двойная углерод-углеродная связь постепенно смещается к карбоксильному концу молекулы и в результате нескольких циклов b-окисления образуется еноил-КоА в котором, во-первых, двойная связь находится между третьим и четвертым атомами углерода, а, во-вторых, эта двойная связь имеет цис-конфигурацию. Однако в клетках есть специальный фермент из класса изомераз, который переводит двойную связь в углеродном радикале кислоты из положения 3,4 в положение 2,3 и изменяет цис-конфигурацию относительно двойной связи на транс-конфигурацию. За счет действия этой изомеразы преодолеваются стереохимические затруднения , возникающие при окислении ненасыщенных жирных кислот.

2.2."Мобилизация" триглицеридов жировой ткани и проблема транспорта высших жирных кислот

В постабсорбционном периоде идет мобилизация энергетических резервов организма, в том числе мобилизация резервных триглицеридов жировой ткани. Образующиеся в ходе мобилизации высшие жирные кислоты через мембраны липоцитов поступают в кровяное русло и в комплексе с альбуминами переносятся с током крови в различные органы и ткани. Там они проникают через наружные клеточные мембраны внутрь клеток и связываются с специальным так называемым Z-белком. В комплексе с этим внутриклеточным белком-переносчиком они перемещаются в цитозоле к месту их использования.

Концентрация неэстерифицированных (иначе свободных) высших жирных кислот в плазме крови натощак составляет 0,68-0,88 мМ/л. Они очень быстро обмениваются в крови – время их полужизни ( или полупериод их существования) в русле крови составляет около 4 минут. За сутки с током крови переносится до 150 г жирных кислот.

Кстати говоря, эта величина превышает величину суточного поступления липидов в организм, что свидетельствует о том, что значительная часть транспортируемых кровью высших жирных кислот являются продуктом их биосинтеза в организме из углеводов или углеродных скелетов аминокислот.

В условиях длительной интенсивной работы, требующей больших энергозатрат, жирные кислоты, поступающие из жировых депо, становятся основным видом "энергетического топлива". Значение их как энергетического топлива еще более возрастает при недостатке глюкозы в клетках органов и тканей, например при сахарном диабете или голодании.

Однако на пути эффективного использования клетками высших жирных кислот, поступающих из кровяного русла, встает так называемый "диффузионный барьер". Суть этого явления в следующем: высшие жирные кислоты на своем пути из кровяного русла в клетки должны пройти через гидрофильную фазу межклеточной среды. Но высшие жирные кислоты не растворимы в воде и скорость их движения через межклеточную среду ограничена. Даже если счесть, что через межклеточное вещество они идут, оставаясь в комплексе с альбуминами (примерно 4% всех альбуминов плазмы крови в течение часа покидают русло крови и такое же их количество возвращается в русло крови с лимфой), то и в этом случае скорость их движения через межклеточный матрикс остается явно недостаточной.

Выходом из положения является преобразование жирных кислот в печени в соединения с небольшой молекулярной массой, растворимые в воде: b-гидроксибутират и ацетоацетат, которые из печени поступают опять же в кровь, а затем из крови идут в органы и ткани. Естественно, для них диффузионного барьера не существует и они служат эффективным энергетическим топливом. Эти соединения получили название - ацетоновые тела. К ацетоновым телам кроме уже 2 упомянутых кислот относится также ацетон. В то же время и в гепатоциты высшие жирные кислоты поступают, минуя диффузионный барьер, поскольку гепатоциты в печеночных синусах непосредственно контактируют с кровью.


<== предыдущая страница | следующая страница ==>
B-Окисление высших жирных кислот | Биосинтез и окислительный распад ацетоновых тел

Дата добавления: 2015-07-26; просмотров: 192; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.013 сек.