Студопедия
rus | ua | other

Home Random lecture






Метод Гаусса .Элементарные преобразования матрицы


Date: 2015-10-07; view: 406.


Элементарные преобразования матрицы — это такие преобразования матрицы, в результате которых сохраняется эквивалентность матриц. Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений, которую представляет эта матрица.

Элементарные преобразования используются в методе Гаусса для приведения матрицы к треугольному или ступенчатому виду.

Элементарными преобразованиями строк называют:

  • перестановка местами любых двух строк матрицы;
  • умножение любой строки матрицы на константу , ;
  • прибавление к любой строке матрицы другой строки, умноженной на константу , .

Ме́тод Га́усса[1] — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные[2].

 


<== previous lecture | next lecture ==>
Матрицы. Произведение матриц на число. Ранг матрицы.Сложение матриц | Необходимость
lektsiopedia.org - 2013 год. | Page generation: 0.608 s.