Главная страница Случайная лекция Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика Мы поможем в написании ваших работ! |
Муниципальное право как отрасль российского праваНеобходимость увеличения эффективности использования автомобильного транспорта и обеспечения выполнения необходимого объема транспортной работы с минимальными народнохозяйственными затратами требует постоянной работы по повышению надежности автомобилей. Сложность задачи при этом заключается в том, что автомобили эксплуатируются в различных дорожных и климатических условиях при разной степени их загруженности и квалификации водительского состава. Создание автомобиля с высокой надежностью может быть обеспечено при комплексном подходе к решению этой задачи на всех этапах «жизненного цикла» автомобиля: при его конструировании, изготовлении и эксплуатации. При современном развитии науки и техники возможно создание машин, в том числе автомобилей, практически с любой заданной надежностью. Тем не менее повышение надежности не является самоцелью. По мере повышения надежности затраты на конструирование и особенно на производство растут, а на эксплуатацию — снижаются. Поэтому речь идет о создании автомобиля с оптимальным сочетанием затрат в производстве и эксплуатации, а в конечном итоге — с минимальными суммарными удельными расходами на приобретение и поддержание в работоспособном состоянии при определенном пробеге до капитального ремонта (рис. 2). Этот пробег и будет оптимальным межремонтным пробегом, характеризующим оптимальную долговечность автомобиля. Ведущая роль в обеспечении надежности автомобиля принадлежит конструктору и достигается следующим: 1) использованием наиболее рациональных принципиальных и компоновочных схем всего изделия, обеспечивающих благоприятные условия для работы отдельных узлов, агрегатов и систем автомобилей; выполнением автомобилем транспортных перевозок грузов в условиях, определяемых его назначением, при сохранении работоспособности в течение заданного периода; приспособленностью к устранению отказов и неисправностей путем проведения технического обслуживания и ремонтов.
Рис. 2. Зависимость затрат на разработку, изготовление и эксплуатацию изделия от его ресурса: Ср—затраты на разработку; С „—на производство; С э — на эксплуатацию; С — суммарные затраты . Такой подход обусловлен самим понятием надежности как совокупности потенциальных свойств конструкции автомобиля, от которых зависит реализация его рабочих функций. Правильно найденные компоновочные решения по автомобилю в целом в значительной мере предопределяют его основные технические показатели: его весовые характеристики, габариты, обзорность, проходимость, безопасность движения, плавность хода, доступность к узлам, агрегатам и системам для технического обслуживания и др. Так, схема «Опрокидывающаяся кабина над двигателем» получила в последнее время широкое распространение на лучших моделях автомобилей большой грузоподъемности, предназначенных для различных условий эксплуатации, что подтверждает ее прогрессивность. Вместе с тем эта схема компоновки вызвала необходимость решения ряда конструкторских и исследовательских проблем. К ним относится выбор оптимального распределения нагрузки на мосты, предопределяющего изменение нагруженности ряда основных узлов и агрегатов автомобиля по сравнению с так называемой классической схемой компоновки. Рассматривая вопросы компоновки автомобилей с точки зрения обеспечения одного из важнейших услбвий надежности, а именно выполнения ими своих функций в течение заданной наработки, необходимо отметить особое влияние компоновки на управляемость и проходимость автомобиля в реальных эксплуатационных условиях. Правильный выбор и согласование характеристик силового агрегата, трансмиссии, подвески и других узлов определяют нагрузочные режимы работы деталей автомобилей, что оказывает непосредственное влияние на их надежность. Поэтому очень важно на стадии проектирования использовать расчетный метод исследования тягово-скоростных качеств автомобилей и характеристик подвески, с помощью которого, применяя ЭВМ, можно определить оптимальные мощность двигателя, передаточные числа трансмиссии и характеристики подвески. Критерием для установления оптимальных значений этих параметров являются минимальные суммарные народнохозяйственные затраты на проведение заданного объема транспортной работы в реальных условиях эксплуатации; 2) применением метода агрегатирования, с помощью которого создается единый типовой ряд автомобилей различного назначения из унифицированных узлов. Поскольку именно узлы определяют потенциальную надежность автомобилей, их проектирование является наиболее ответственным этапом создания автомобиля. Высокая надежность узлов достигается также при широком использовании стандартизованных, нормализованных, унифицированных элементов. Основой для решения проблемы унификации узлов для семейства автомобилей является исследование влияния режима работы узла на его надежность. Этому способствуют разработанные типажи автомобилей и параметрических рядов основных узлов, используемых на различных автотранспортных средствах в большом диапазоне их грузоподъемности. Пределы изменения выходных параметров узлов в процессе эксплуатации должны быть достаточно широкими. При необходимости режим работы узла может быть облегчен за счет смягчения влияния окружающей среды (например, уменьшения числа и продолжительности пиковых нагрузок); 3) упрощением конструкции автомобиля, применением минимального числа деталей и конструктивных элементов. Решение этой задачи усложняется тем, что в каждой новой модели автомобиля конструктор стремится реализовать все возрастающие эксплуатационные требования. Поэтому исключительно важно использование отработанных заранее узлов, проверенных на предыдущих серийных моделях элементов конструкций деталей, обеспечивающих высокую надежность узлов; 4) обеспечением безотказности отдельных систем автомобилей в некоторых случаях за счет частичного резервирования элементов схемы. Чаще это относится к узлам, от которых зависит безопасность движения и безотказность которых должна быть выше, чем других узлов. Примером такого резервирования является осуществление раздельного привода тормозных механизмов передних и задних колес, что исключает аварийный отказ системы при отказе одного из приводов; 5) обеспечением высокой прочности деталей без увеличения их массы (приданием им рациональных форм, применением материалов с повышенными прочностными свойствами); 6) повышением износостойкости деталей, учитывая то, что именно недостаточная износостойкость обусловливает наступление предельного состояния таких деталей, как, например, крестовины и шлицевые соединения карданной передачи, шкворневые соединения управляемых мостов, шаровые соединения рулевых тяг и др. Помимо правильного выбора размеров сопряженных деталей, следует тщательно подбирать для них материалы и использовать наиболее эффективные технологические методы упрочнения и повышения износостойкости трущихся поверхностей; 7) исключением или максимальным уменьшением концентрации напряжений в наиболее нагруженных и ответственных деталях автомобиля (у поворотных кулаков — за счет плавного перехода от стержня к фланцу, обеспечения малой шероховатости и термообработки ТВЧ переходной галтели; в нагруженных шестернях коробок передач, раздаточных коробок и ведущих мостов — путем увеличения радиуса выкружки; в лонжеронах рамы — исключением отверстий на горизонтальных полках и т. п.); 8) обеспечением возможности восприятия высоких циклических и динамических нагрузок для ряда деталей двигателя, трансмиссии и ходовой части автомобилей (коленчатых валов двигателей, цапф мостов, рычагов рулевого привода и т. д.). Такие детали должны быть изготовлены из материалов, обладающих высокими сопротивлением усталости и ударной вязкостью; 9) исключением возможности резкого возрастания нагрузок в трансмиссии автомобилей и ходовой части, смягчением их за счет применения гидромеханических передач, демпферных устройств, эластичных подвесок и др.; 10) обеспечением необходимой жесткости деталей за счет целесообразных их форм и рационального расположения опор, что особенно важно, например, для надежной работы зубчатых колес и подшипников, расположенных на валах коробок передач и раздаточных коробок автомобилей; 11) снижением напряжений в несущих деталях автомобилей — рамах грузовых автомобилей и кузовах легковых автомобилей и автобусов — за счет рационального выбора их размеров и форм, обеспечивающих достаточную жесткость в сочетании с необходимой податливостью элементов. Оптимальные соотношения этих свойств устанавливаются в результате тщательных расчетно-исследовательских и опытно-конструкторских работ. Учитывая, что предельное состояние автомобиля в целом наступает при достижении предельного состояния рамы (грузового или легкового автомобиля и автобуса), отработка их конструкции должна быть особенно тщательной; 12) выбором конструктивных решений, обеспечивающих сборку деталей только в определенном положении, если иное положение может привести к их поломке или снижению надежности. Так, например, на вилке и трубе карданного вала выбивают стрелки, которые должны быть при сборке совмещены, чтобы исключить нарушение балансировки и возникновение вибраций, приводящих к увеличенным нагрузкам на подшипники и к изгибу вала; 13) обеспечением надежной затяжки резьбовых соединений, в ответственных соединениях — исключением самоотворачивания (особенно для резьбовых соединений, расположенных внутри агрегатов), для соединений, не нуждающихся в частой разборке (например, для регулуровок),— применением самостопорящихся крепежных деталей; 14) предупреждением коррозии деталей за счет обеспечения эффективной антикоррозионной защиты, особенно кабин и рам грузовых автомобилей, кузовов легковых автомобилей и автобусов, резьбовых соединений; 15) созданием необходимых условий для оптимальных температурных режимов работы деталей трансмиссии, например подбором уровня масла в агрегате, хорошим и удобным подводом смазочного материала к трущимся деталям и надежным уплотнением, исключающим его потери. Применением уплотнительных манжет и колец из материалов, не теряющих эластичность при изменении температуры окружающей среды и не стареющих длительное время, для уплотнения фланцевых и резьбовых соединений — герметиков различных типов; 16) широким использованием конструкций лучших аналогичных отечественных и зарубежных автомобилей, а также машин смежных отраслей промышленности; 17) обеспечением эффективной очистки воздуха, топлива и масла; 18) созданием условий для локализации отказа, с тем чтобы его последствия были минимальными; 19) совершенствованием эксплуатационной технологичности; улучшением приспособленности конструкций автомобиля, агрегата или узла к выполнению с наименьшей трудоемкостью необходимых операций по предупреждению (техническое обслуживание) и устранению (ремонт) неисправностей и отказов с целью поддержания надежности автомобиля в данных условиях эксплуатации. Для обеспечения минимальной трудоемкости ТО и ремонтов автомобиля в эксплуатации в конструкции необходимо предусматривать: - минимальное количество деталей и точек, требующих ТО (смазывания, крепления, регулировки, ухода); - доступность к обслуживаемым узлам и простоту выполнения каждой операции ТО и ремонта; - возможность устранения неисправности или отказа без разборки узла и с минимальной разборкой других узлов автомобиля; - максимальную унификацию узлов, деталей, крепежных соединений, размеров инструмента, приспособлений, приборов, необходимых для ТО и ремонта, минимальную потребность в специальном инструменте; - ограниченную номенклатуру топлива, смазочных материалов и жидкостей; легкосъемность агрегатов и деталей, подвергающихся частому демонтажу в эксплуатации; возможность демонтажа тормозных барабанов для осмотра и обслуживания механизмов - тормозов без демонтажа ступиц колес; - свободный доступ к вентилям шин сдвоенных колес; - применение штекерных разъемов, позволяющих снимать основные узлы и осветительные приборы без развинчивания контактных соединений; - обеспечение свободного доступа механизированным инструментом или стандартными динамометрическими ключами к крепежным соединениям большого или нормированного усилия затяжки; к остальным крепежным соединениям — стандартным крепежным инструментом; - установку в конструкциях сборочных единиц специальных приспособлений и устройств для быстрого и удобного подсоединения стандартной диагностической аппаратуры. Надежность автомобиля в значительной степени зависит от качества изготовления деталей. На стадии производства автомобиля использование прогрессивных технологических процессов создает условия не только для стабильного и бездефектного изготовления деталей и сборочных единиц в соответствии с требованиями конструкторской документации, но и способствует повышению их долговечности. Поэтому на всех стадиях проектирования и подготовки изделия к производству задачей конструктора совместно с технологическими службами является тщательная отработка конструкции на технологичность. Технологичность конструкции изделия — это совокупность ее свойств, обеспечивающих минимальные затраты труда, средств, материалов и времени при технической подготовке производства, изготовлении, эксплуатации и ремонте. Она оценивается.в сравнении с соответствующими показателями однотипных изделий того же назначения при обеспечении установленных значений показателей качества и принятых условий изготовления, эксплуатации и ремонта. Повышение качества изделий в большинстве случаев связано с повышением точности обработки и сборки деталей. Изготовление деталей по более высокому квалитету точности связано с большими трудоемкостью и затратами на оборудование, что увеличивает себестоимость изделия. Но при этом обеспечиваются более высокая точность сопряжений, постоянство характера этих сопряжений для большой партии деталей и узлов при их серийном или массовом выпуске, более благоприятные условия для работы сопряженных деталей, а в конечном итоге — высокие эксплуатационные показатели машин. Изготовление деталей по расширенным допускам проще, но обусловливает снижение их гарантированной точности и, следовательно, долговечности машин. Таким образом, задача конструктора и технолога — рационально на основе технико-экономического анализа разрешать противоречия между эксплуатационными требованиями и технологическими возможностями исходя прежде всего из выполнения эксплуатационных требований. При таком анализе должны учитываться все элементы затрат, включая затраты на разработку, на производство и связанные с эксплуатацией изделия. При проектировании необходимо устанавливать соответствующие функциональному назначению детали или сборочной единицы рациональные квалитеты (классы) точности и чистоту обработки, предельные отклонения формы и расположения поверхностей. Например, зубчатые колеса, изготовленные с небольшой точностью, не могут работать при высоких скоростях вращения, так как при этом в передаче возникают дополнительные ударные нагрузки. Обеспечение заданных точности изготовления, геометрической формы и шероховатости поверхностей сопряженных деталей способствует повышению надежности подшипниковых узлов и износостойкости опорных поверхностей, в частности при заданной шероховатости нагруженных валов — необходимого сопротивления их усталости. Предельное состояние деталей в большинстве случаев вызывается недостаточной износостойкостью, во многом зависящей от принятой технологии их изготовления. К основным технологическим факторам, оказывающим наибольшее влияние на износостойкость, относятся: качество материала детали, особенно ее поверхностного слоя; шероховатость поверхностей трения; точность размеров и геометрической формы; качество сборки. При правильно назначенных и выполненных перечисленных факторах увеличение износостойкости может быть достигнуто за счет поверхностного упрочнения деталей автомобилей. Методы упрочнения различны: поверхностное пластическое деформирование (дробеструйная и пескоструйная обработка, накатывание, волочение, калибрование, центробежно-шариковая обработка и упрочнение взрывом и др.); поверхностная закалка, например токами высокой частоты (ТВЧ), а также комбинированные методы — термическая обработка и пластическое деформирование. Широкое распространение получили в автомобилестроении методы химико-термической обработки (цементация, азотирование, борирование и др.), диффузионное насыщение поверхностных упрочняемых слоев обрабатываемых деталей, упрочнение поверхностных слоев нанесением твердых износостойких покрытий, методы лазерного и электронно-лучевого упрочнения и некоторые другие. Для повышения надежности деталей автомобилей используют, например, следующие технологические методы обработки. 1. Для зубчатых колес и валов ведущих мостов, коробок передач и раздаточных коробок применяют химикотермическую обработку — цементацию (высокотемпературное насыщение низкоуглеродистых сталей углеродом) и закалку. Такой обработке подвергаются детали из высоколегированных сталей. Так, например, для зубчатых колес и валов коробок передач иногда применяют сталь 15ХГН2ТА, цементацию производят на глубину 0,9...1,2 мм, твердость цементованного слоя 50... 63 HRCa, сердцевины зубьев — 37... 42 HRC3. Установлены и нормы на размер зерна. Для зубчатых колес главной передачи автомобилей Минского автозавода применяют сталь 20ХНЗА, цементацию производят на глубину 1,2...1,5 мм; твердость цементованного слоя не менее 59 HRC3, сердцевины зубьев —30...44 HRC3. При цементации и закалке в результате структурных и термических превращений в цементованном слое возникают значительные остаточные напряжения. Этот метод химико-термической обработки при высокой твердости поверхности зуба и относительно вязкой его сердцевине обеспечивает высокую износостойкость и изгибную и контактную прочность. Шевингование зубьев цилиндрических шестерен способствует повышению чистоты поверхности зубьев, устранению погрешностей профиля и размеров зубьев. Однако более существенным резервом повышения долговечности зубчатых колес является применение зубошлифования вместо чаще всего используемого шевингования. Кроме того, для уменьшения концентрации нагрузки зубьям цилиндрических колес придают бочкообразную форму, при которой толщина зуба уменьшается от середины к торцам (например, у зубчатых колес главной передачи автомобилей КрАЗ — на 0,08 мм). Бочкообразная форма зуба дает возможность стабилизировать пятно контакта в средней части зубьев и тем самым увеличить долговечность передачи за счет уменьшения контактных напряжений и напряжений при изгибе зубьев, улучшить их приработку, уменьшить шум во время работы. Применяют также упрочнение шестерен с помощью поверхностного наклепа методом дробеструйной обработки (изгибная прочность зубьев шестерен повышается на 10...15 %, а контактная— на 15...25,%). В немалой степени долговечность зубчатых колес зависит от методов получения заготовок. Так, при изготовлении зубчатых колес методом горячей накатки прочность зубьев повышается на 15...40 % за счет расположения волокон металла по контуру зуба и возникновения полезных напряжений сжатия в его поверхностных слоях. 2. Для шлицевых соединений валов трансмиссии обеспечивают высокую точность их изготовления, особенно размеров по центрирующему диаметру шлицев, поскольку увеличение зазора в этом соединении приводит к увеличению скорости их изнашивания. Эффективным является разработанный на Минском автозаводе метод чистового продольного накатывания прямобочных шлицев в отверстиях и на валах с помощью шлиценакатных устройств и многороликовыхраскатников. В процессе такой обработки деталей карданных валов высота микронеровностей боковых поверхностей зубьев уменьшается до 6,3... 1,6 мкм. На накатанных поверхностях разность толщин зубьев и непараллельность их боковых поверхностей в поперечном сечении находятся в пределах 0,010... 0,025 мм при исходном различии толщин до 0,03 мм. После термической обработки, осуществляемой вслед за накатыванием, толщина зубьев и точность их расположения сохраняются. Износостойкость их зависит от твердости шлицев деталей, входящих в сочленение. 3. Методы поверхностного пластического деформирования (ППД), относящиеся к наиболее прогрессивным технологическим процессам современной чистовой обработки, обеспечивают получение заданной шероховатости поверхностей и одновременно — упрочняющего эффекта. Образующиеся при этом микронеровности скругленной формы способствуют увеличению площади несущей поверхности и, соответственно, уменьшению давления в зоне контакта трущихся пар, а образование рельефа с большими радиусами выступов и впадин — удержанию смазочного материала между трущимися поверхностями. Упрочнение деталей методами ППД происходит за счет наклепа, при котором в поверхностном слое детали образуются остаточные напряжения сжатия и повышается его твердость. Накатывание обеспечивает возможность получения поверхностей с параметром шероховатости Ra=0,4... 0,05 мкм при исходной шероховатости =6,3...1,6 мкм и упрочнение поверхностного слоя на 15...20 %. Обработке ППД подвергаются стальные детали с твердостью до 40...45 HRCa, детали из чугуна, алюминиевых сплавов и цветных металлов с различной формой наружных и внутренних поверхностей (цилиндрическими, коническими, шаровыми, торцевыми поверхностями), а также кольцевыми канавками различного профиля и многошлицевыми отверстиями. Этим методом обрабатываются посадочные поверхности под подшипники ступиц колес, тормозные барабаны, детали карданной передачи, рулевого управления, подвески, гидравлических и пневматических устройств. 4. Все большее применение для деталей автомобилей находит лазерное и электронно-лучевое термоупрочнение. Впервые в отечественном автомобилестроении мощные лазерные установки были внедрены на Московском автомобильном заводе для закалки опорных поверхностей под полуосевые шестерни и сателлиты в чашках дифференциала заднего моста автомобиля «Москвич», изготовляемых из ферритного ковкого чугуна КЧ 35-10. При этом на каждую поверхность под шестерню или сателлит в виде кольца шириной 8...10 мм наносятся две дорожки упрочнения шириной 2 мм на расстоянии 2...3 мм друг от друга с глубиной закалки 0,1...0,2 мм. Лазерная и электронно-лучевая обработка используется также для упрочнения поршневых колец и канавок для них, шаровых шарниров, седел клапанов, толкателей и других деталей. Твердость упрочненного слоя деталей составляет 61...64 HRC». Лазерное и электронно-лучевое термоупрочнение обеспечивает значительное повышение износостойкости стальных и чугунных деталей по сравнению с нормализованными или не обработанными термически поверхностными слоями, но не дает существенного уменьшения степени изнашивания по сравнению с деталями, поверхностные слои которых подвергаются нитроцементации, цементации, и даже качественной закалке ТВЧ. 5. Дробеструйная обработка листов рессоры с одной или двух сторон обеспечивает повышение долговечности рессоры за счет создания остаточных напряжений сжатия. Для упрочнения скользящего конца рессоры на ЗИЛе, например, производится электротермическая обработка листов рессоры, обеспечивающая получение высокой твердости поверхности (57...61 HRC3). То же достигается лазерной или электронно-лучевой обработкой. Однако обеспечить реальное повышение долговечности рессорного узла можно лишь при увеличении износостойкости не только коренных листов, но и работающих в паре с ними вкладышей опоры рессоры. Обычно их упрочняют закалкой ТВЧ (КамАЗ), индукционной закалкой (КрАЗ), цементацией (ЗИЛ). Более эффективно здесь применение плазменного и газопламенного напыления различных самофлюсующихся материалов с последующим их оплавлением. Пальцы ушка задней рессоры, упрочненные нанесением износостойкого материала, имеют повышенную почти в 4 раза износостойкость по сравнению с пальцами, поверхность которых закалена ТВЧ. Одновременно должна быть увеличена твердость втулки до 57...61 HRC9. 6. Эффективным методом повышения износостойкости деталей машин является высокотемпературное напыление на поверхности самофлюсующихся сплавов с последующим их оплавлением. Исследования показали, что износостойкость напыленного и оплавленного покрытия из самофлюсующихся сплавов в условиях абразивного изнашивания в 2...3 раза выше, чем стали 45, закаленной до твердости 47.. .49 HRCa. Этот метод используется, в частности, для напыления поверхности зева буксирного крюка автомобилей Минского автозавода, что обеспечило не менее чем четырехкратное увеличение долговечности крюка по сравнению с подвергавшимся ранее объемной закалке и отпуску. Применение самофлюсующихся порытий весьма эффективно и для повышения износостойкости шарниров тяг привода рулевого управления. Износостойкость упрочненных таким методом шаровых пальцев и сухарей в 3,5...5 раз выше по сравнению с деталями, закаленными ТВЧ или цементованными. Приведенные примеры только иллюстрируют возможности технологических методов повышения надежности деталей автомобилей, но, конечно, не дают полного освещения этого направления. Только совместная работа конструктора и технолога, правильная организация этой работы на всех стадиях разработки, изготовления и эксплуатации автотранспортных средств у потребителя позволяет изыскать оптимальные пути обеспечения необходимой надежности автомобилей. Опыт передовых предприятий автомобильной промышленности показывает, что наибольший эффект достигается, если деятельность всех служб предприятия — технических, контроля, стандартизации, метрологии и, конечно, производственных подразделений — будет подчинена решению этой важнейшей народнохозяйственной задачи. Одно из ведущих мест в этой работе, как правило, принадлежит конструкторско-экспериментальным отделам (или управлениям).
Муниципальное право как отрасль российского права 1. Понятие, предмет, метод; 2. Муниципально-правовые нормы и институты; 3. Муниципально-правовые отношения; 4. Субъекты муниципальных правооношений; 5. Источники муниципального права.
Дата добавления: 2014-08-04; просмотров: 263; Нарушение авторских прав Мы поможем в написании ваших работ! |