Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Rockets

A. A rocket is a vehicle which obtains thrust by the reaction to the ejection of fast moving fluid from within a rocket engine.

B. Rockets are used for fireworks and weaponry, as launch vehicles for artificial satellites, and for human spaceflight and exploration of other planets. While they are inefficient for low speed use, they are, compared to other propulsion systems, very lightweight, powerful and can achieve extremely high speeds.

C. In 1903, high school mathematics teacher Konstantin Tsiolkovsky (1857-1935) published the first serious scientific work on space travel. The Tsiolkovsky rocket equation—the principle that governs rocket propulsion—is named in his honor. Tsiolkovsky proposed to use liquid oxygen and liquid hydrogen as a nearly optimal propellant pair and determined that staged and clustered rockets increase the overall mass efficiency would dramatically increase range.

D. Most current rockets are chemically powered rockets. A chemical rocket engine can use gas propellant, solid propellant, liquid propellant, or a hybrid mixture of both solid and liquid. A chemical reaction is initiated between the fuel and the oxidizer in the combustion chamber, and the resultant hot gases accelerate out of a nozzle (or nozzles) at the rear end of the rocket. The acceleration of these gases through the engine exerts force (thrust) on the combustion chamber and nozzle, propelling the vehicle.

E. Due to their high exhaust velocity (Mach ~10) rockets are particularly useful when very high speeds are required, such as orbital speed (Mach 25). Rockets remain the only way to launch spacecraft into orbit. They are also used to rapidly accelerate spacecraft when they change orbits or de-orbit for landing. There are many different types of rockets.

F. A multistage rocket is the most popular, it uses two or more stages, each of which contains its own engines and propellant. A stacked stage is mounted on top of another stage; a parallel stage is attached next to another stage. Two stage rockets are quite common, but rockets with as many as five separate stages have been successfully launched.

G. By jettisoning stages when they run out of propellant, the mass of the remaining rocket is decreased. This staging allows the thrust of the remaining stages to more easily accelerate the rocket to its final speed and height.

H. In stacked staging schemes, the first stage is at the bottom and is usually the largest, the second stage is above it and is usually the next largest. Subsequent upper stages are above those. In parallel staging schemes solid or liquid rocket boosters are used to assist with lift-off.

I. The main reason for multi-stage rockets and boosters is that once the fuel is burnt, the space and structure which contained it and the motors themselves are useless and only add weight to the vehicle which slows down its future acceleration. By dropping the stages which are no longer useful, the rocket lightens itself. When a stage drops off, the rest of the rocket is still travelling near to the speed that the whole assembly reached at burn-out time. This means that it needs less total fuel to reach a given velocity and/or altitude.

J. An advantage is that each stage can use a different type of rocket motor, with each stage/motor tuned for the conditions in which it will operate. Thus the lower stage motors are designed for use at atmospheric pressure, while the upper stages can use motors suited to near vacuum conditions.

Comprehension Check

1. In the text find the definition of: a) rocket; b) multistage rocket; c) rocket equation.

2. Explain the difference between stacked staging scheme and parallel staging scheme.

3. Define the main idea of paragraphs D and I. Find supporting details that help to develop the main idea.

4. Complete the sentences with the best option.

1. A rocket is a vehicle which obtains ____ by the reaction to the ejection of fast moving fluid from within a rocket engine.

a) lifting force b) thrust c) power

2. A chemical reaction in a chemical rocket is initiated between the fuel and the oxidizer _______ .

a) in the nozzle b) in the vehicle c) in the combustion chamber

3. When the stages run out of propellant they are jettisoned _______ the rocket.

a) to accelerate b) to assist with lift-off c) to slow down

4. Rockets are particularly useful _____ .

a) because of light weight b) at high altitudes c) at very high speeds

5. In stacked staging schemes the first stage is _____ and is usually the largest, the second stage is above it.

a) at the top b) at the bottom c) not dropped off

5. Work in group. Ask your partners questions concerning the contents of the text.

Vocabulary Focus

1. a) Match the synonyms.

A B

vehicle booster

fluid engine

launch vehicle aircraft

artificial fuel

govern begin

obtain liquid

propellant man made

initiate get

motor control

b) Make up your own sentences with the words from the column B.

2. In the text find the words with the meaning opposite to these phrases.

Efficient , heavy (B); solid, to decrease (C); deceleration (D); to separate, unusual (F); previous, to prevent (H).

3. a) Make sure that you know the meaning of the following verbs.

To obtain, to explore, to compare, to achieve, to propose, to determine, to exert, to require, to mount.

b) Make up your own word combinations using these verbs.

4. Give your own definitions for the words from the text.

Combustion chamber, rocket stage, propellant, booster, vacuum, exhaust velocity, orbit.

5. Fill in the table with the proper part of speech derived from the word given.

Verb Noun Adjective (Participle)
    ejected
explore    
  propulsion  
  achievement  
    equal
  determination  
    initiated
  acceleration  
attach    
  container  

Speaking

1. In small groups summarize the main idea of the text and make a short report for your group mates.

2. The history of rockets goes back to the 13th century. People have developed a lot of original designs for different purposes. You are to prepare a report on the subject for your group mates. Find out some additional information for your topic.

Writing

1. Translate the text in a written form.

A spacecraft is a vehicle designed to leave Earth's atmosphere and operate beyond the surface of the Earth in outer space. Spacecraft may either be unmanned or manned. Spacecraft are designed for a variety of missions which may include communications, earth observation, meteorology, navigation, planetary exploration, space tourism and space warfare. The term spacecraft is also used to describe artificial satellites.

A spacecraft is a system made up of various subsystems, dependent upon mission profile. Spacecraft subsystems may include: attitude determination and control, guidance, navigation, and control, communications, command and data handling, power, thermal control, propulsion, structures, and payload. Manned spacecraft have the additional requirement of providing life support to the crew. Though not being part of the spacecraft itself, the launch vehicle is used to place a spacecraft in orbit.

Spacecraft must be engineered to withstand launch loads imparted by the launch vehicle, and must have a point of attachment for all the other subsystems. Depending upon mission profile, the structural subsystem might need to withstand loads imparted by entry into the atmosphere of another planetary body, and landing on the surface of another planetary body.

Spacecraft need an attitude control subsystem in order that they may be correctly oriented in space and respond to external torques and forces properly. The attitude control subsystem consists of sensors and actuators.

Guidance refers to the calculation of the commands needed to steer the spacecraft where it is desired to be. Navigation means determining a spacecraft's orbital elements or position. Control means adjusting the path of the spacecraft to meet mission requirements.

The communications subsystem, sometimes called the Telemetry, Tracking, and Control subsystem serves as an interface between the spacecraft and the ground system, or between the spacecraft and other spacecraft. The communication subsystem receives telecommands from the ground subsystem, and transmits telemetry from the spacecraft.

Spacecraft need an electrical power generation and distribution subsystem for powering the various spacecraft subsystems. For spacecraft near the Sun, solar panels are frequently used to generate electrical power. Spacecraft designed to operate in more distant locations, for example Jupiter, might employ a Radioisotope Thermoelectric Generator to generate electrical power.

Electrical power is sent through power conditioning equipment before it passes through a power distribution unit over an electrical bus to other spacecraft components. Batteries are typically connected to the bus via a battery charge regulator, and the batteries are used to provide electrical power during periods when primary power is not available, for example when a Low Earth Orbit (LEO) spacecraft is eclipsed by the Earth.

Spacecraft must be engineered to withstand transit through the Earth's atmosphere and the space environment. They must operate in a vacuum with temperatures potentially ranging across hundreds of degrees Celsius. Depending on mission profile, spacecraft may also need to operate on the surface of another planetary body.

Spacecraft may or may not have a propulsion subsystem, depending upon whether or not the mission profile calls for propulsion. Typically though, LEO spacecraft include a propulsion subsystem for altitude adjustments and inclination adjustment maneuvers. Components of a conventional propulsion subsystem include fuel, tankage, valves, pipes, and thrusters.

The ground system is also vital to the operation of the spacecraft. Typical components of a ground system in use during normal operations include a mission operation facility where the flight operation team conducts the operations of the spacecraft, a data processing and storage facility, ground stations to radiate signals to and receive signals from the spacecraft, and a voice and data communications network to connect all mission elements.

 

Final Test

1. Look at these words for parts of a plane.

ailerons main strut rudder stabilizer flaps elevators cockpit cargo room nose gear

Now fill in the “word tree” below by putting a term in each box. Some words are filled in for you. Try to give some kind of organization to the tree.

 

Supplementary Reading

A new Era for Aircraft

Aviation experts expect that today's aircraft will be replaced with some new form of supersonic transport. A 21st century hypersonic aircraft may open a new age of aircraft design.

The designers of this country displayed the project of such a
supersonic passenger liner among the prospective models at the Aerospace Salon held on the old Le Bourget airfield in Paris. An
elongated fuselage with a sharp nose and without a horizontal stabilizer
makes it look more like a rocket. The speed matches the looks. This
plane will fly at a speed five to six times above the speed of sound, e.g. it
will cover the distance between Tokyo and Moscow in less than two
hours. The diameter of the fuselage will be 4 meters and the overall
length - 100 meters, with the cabin accommodating 300 passengers. The
future super planes of such a class will have no windows, but the
passengers can enjoy watching the panorama of the Earth on the TV
monitor at the front of the cabin. They will fly so fast that ordinary
aircraft windows would make the structure too weak to withstand the
stresses at such a speed. At high velocities the air resistance in the lower atmosphere is so great that the skin is heated to very high temperature, the only way out is to fly higher. Therefore, airliners' routes will mainly lie in the stratosphere.

In general, to build a reliable hypersonic plane one has to overcome a whole set of technological and scientific difficulties. Apart from creating highly economical combined engines and heat-insulating materials designers have to make such an amount of thermodynamic computations that can't be performed without using supercomputers. One of the ways to make planes as economical as possible is lightening the aircraft by substituting new composite materials for conventional metal alloys. Accounting for less than 5 per cent of the overall aircraft weight, the percentage of composite material parts will exceed 25 per cent in new generation models. An extensive use of new materials combined with better aerodynamics and engines will allow increasing fuel efficiency by one-third.

Because of the extreme temperatures generated by atmosphere friction, a hypersonic aircraft will also require complicated cooling measures. One possibility is using cryogenic fuels, such as liquid hydrogen, as both coolants and propellants. The fuel flowing through the aircraft's skin would cool the surfaces as it vaporizes before being injected into combustion chamber.

In addition, specialists in many countries are currently working on new propeller engines considered much more economical and less noisy than jets. The only disadvantage is that propeller planes fly slower than jet planes. However, it has recently been announced that specialists succeeded in solving this problem. As a result a ventilator engine with a propeller of ten fiber-glass blades has been built, each being five meters long. It will be mounted inthe experimental passenger plane.

Notes to the Text:

1. Le Bourget airfield - аэропорт Ле Бурже

2. the looks - внешний вид

3. heat-insulating materials - теплоизолирующие материалы

4. accounting for - составляя

5. coolant - охлаждающая жидкость

 

TU-154

The Tu-154 was developed to meet the Aeroflot requirement for a new aircraft to replace the jet-powered Tu-104, plus the Antonov An-10 and Ilyushin Il-18 turboprops. The requirement required economic efficiency on routes from 500 to 3500 km, higher speed than the Tu-104, 50% more passenger capacity, and the ability to operate from runways as short as 2300 meters with low pavement loads.

The Tu-154 first flew on October 4, 1968.

In 1988 modified Tu-154 (dubbed Tu-155 and Tu-156) successfully flew on liquid hydrogen and in 1989 on liquified natural gas used as a fuel in its engines.

The Tu-154 is powered by three rear-mounted low-bypass turbofan engines. All Tu-154 aircraft models have a high thrust-to-weight ratio, this gives them superior performance, although at the expense of poorer fuel efficiency, which became an important factor as the fuel costs grew.

Like the Tupolev Tu-134, the Tu-154 has a wing swept back at 35 degrees at the quarter-chord line. The Tu-154 has an oversized landing gear enabling it to land on runways with low permissible pavement loadings. The aircraft has two six-wheel main bogies fitted with large low-pressure tyres which retract into pods extending from the trailing edges of the wings, plus a two-wheel nose gear unit. Shock absorbers provide smooth ride on the bumpy airfields.

The passenger cabin accommodates 128 passengers in two-class layout and 164 passengers in single-class layout, and up to 180 passengers in high-density layout.

The plane's avionics suite, for the first time in the Soviet Union, is built to Western airworthiness standards and includes an NVU-B3 doppler navigation system, a triple autopilot, an autothrottle, a Doppler drift and speed measure system (DISS), "Kurs-MP" radio navigation suite and others. Modern upgrades normally include a TCAS, GPS and other modern systems. About 900 of Tu-154s have been built, 500 of which are still in service. Many variants of this airliner have been built.

The Tu-154M is the deeply upgraded version, which first flew in 1982 and entered mass production in 1984. It uses more fuel-efficient Soloviev D-30KU-154 turbofans. Together with significant aerodynamic refinement, this led to much lower fuel consumption and therefore longer range. The aircraft has new double-slotted (instead of tripple-slotted) flaps, with an extra 36-degree position (in addition to existing 15, 28 and 45-degree positions on older versions), which allows reduction of noise on approach. It also has a relocated auxiliary power unit and numerous other improvements.

IL-96

The Ilyushin Il-96 is a four-engined long-range widebody airliner, which incorporates advanced achievements in Russian and foreign aerospace technology. The IL-96-300 aircraft is designed by Ilyushin Aviation Complex. The aircraft is powered by four turbofan two-shaft Aviadvigatel PS-90 engines.

The Ilyushin Il-96 is a shortened, long-range, and advanced technology development of Russia's first widebody airliner, the Ilyushin Il-86. Its fuselage is about 4m shorter than that of the IL-86. The airframe is made with a new type high-purity aluminium alloy as well as titanium and steel alloys. Quite extensive use is made of composite materials. The upper and lower surfaces of the wing leading edge and the trailing edge, aft of the rear spar are made of honeycomb panels.

It features supercritical wings fitted with winglets, a glass cockpit, and a fly-by-wire control system. It was first flown in 1988 and certificated in 1992.

The IL-96-300 aircraft equipped with modern Russian made avionics which includes six multi functional color-LCD displays, electro remote management system, inertial navigation system, collision air avoidance system and satellite navigation equipment, and equipment permitting executes flights in RVSM conditions. It allows operating the airplane with two crew members. The avionics correspond to modern requirements on international routes in Europe and North America.

The Il-96-300 has a passenger cabin layout for 262 seats, 18 seats with pitch equal to 54 inches plus 244 seats with pitch equal to 32 inches. Galleys are positioned on the upper deck, 18 containers LD-3 and crew rest room are positioned on the lower deck. There is also stipulated a converting of this layout to the 289 seats layout by changing seats in the business class section from 18 to 44 with seats pitch of 34".

 


UNIT 1

From the History of flying

1. wing – крыло

2. safety - безопасность

3. pressure - давление

4. scientific - научный

5. flow – поток, течь

6. lift (lifting force) - подъёмная сила

7. device – устройство, агрегат

8. development – разработка, развитие

9. control – управление, управлять

10. plane – плоскость, самолёт

11. flight - полёт

12. crew - экипаж

13. altitude - высота

14. range – дальность, диапазон

15. speed - скорость

16. supersonic jet plane - сверхзвуковой

реактивный самолёт

17. piston-engined aircraft – самолёт с поршневым двигателем

18. equip, equipment – оборудовать, оборудование

19. armament – вооружение

 

UNIT 2

Pioneer of Rocket Engineering

1.designer – конструктор

2.artificial – искусственный

3.satellite – спутник

4.spaceship – космический корабль

5.guidance – руководство

6.to graduate from – заканчивать учебное заведение

7.acquaintance – знакомство

8.jet propulsion – реактивное движение

9.participation – участие

10. release – освобождение

11. to appoint – назначать

12. unexpectedly – неожиданно, внезапно

13. to implement – осуществлять

14. gratitude – признательность

15. fruitful – плодотворный

 

UNIT 3

From the History of Flying

Apparatus

1. to force – вынуждать, заставлять

2. to drift – сноситься ветром

3. engine - двигатель

4. balloon – воздушный шар

5. transportation - перевозка

6. scientist - учёный

7. to obtain - достигать

8. radar - радар

9. readings - данные

10. flight - полёт

11. air - воздух

12. distance - расстояние

13. to reach – достигать

 

UNIT 4

Types of aircraft

1. glider - планер

2. airplane - самолёт

3. helicopter - вертолёт

4. autogiro - автожир

5. missile- реактивный снаряд, ракета

6. power plant – силовая установка

7. air stream – воздушный поток

8. air flow – воздушный поток

9. advance – успех, прогресс

10. engine - двигатель

11. lift (lifting force) – подъёмная сила

12. to propel – двигать, толкать

13. thrust - тяга

14. jet engine – реактивный двигатель

15. arrangement – компоновка, распо- ас ложение

16. biplane - биплан

17. monoplane - моноплан

18. mid wing monoplane - среднеплан

19. high wing monoplane - высокоплан

20. low wing monoplane - низкоплан

21. fuselage - фюзеляж

22. to attach - прикреплять

23. strut – стойка

24. brace - подкос

25. to take off - взлетать

26. to land - приземляться

27. flying boat – летающая лодка

28. seaplane - гидросамолёт

29. conventional – традиционный, обычный

30. amphibian - амфибия

31. airfoil – аэродинамическая плоскость

32. rotor – несущий винт вертолёта

33. blade - лопасть

34. tractor airscrew - тянущий воздушный в винт

35. fuel - топливо

 

 

UNIT 5

Airplane Components

1. tail unit (empennage) – хвостовое оперение

2. flight controls – средства управления полётом

3. landing gear (undercarriage) - шасси

4. to propel - двигать

5. nacelle - гондола

6. compartment – отсек, кабина

7. accessories – вспомогательное оборудование

8. cockpit – кабина пилота

9. wing centre-section – центроплан

10. to design - проектировать

11. cargo room – грузовой отсек

12. sweptback - стреловидный

13. trailing edge – задняя кромка

14. aileron - элерон

15. flap - закрылок

16. trimmer tab - триммер

17. fin - киль

18. plane – плоскость, самолёт

19. rudder – руль поворота

20. stabilizer - стабилизатор

21. elevator – руль высоты

22. to hinge – крепить шарнирно

23. to deflect - отклонять

24. wing tip – законцовка крыла

25. longitudinal axis – продольная ось

26. lateral axis боковая (поперечная) ось

27. attach - прикреплять

28. tricycle gear – трехопорное шасси

29. skid - хвостовая опора

30. retractable - втягивающийся

 

UNIT 6

Aircraft and some facts about the

flight

1. aircraft – летательный аппарат

2. force - сила

3. leading edge – передняя кромка

4. trailing edge- задняя кромка

5. to reduce - уменьшать

6. to compress - сжимать

7. to increase - увеличивать

8. thrust - тяга

9. drag – лобовое сопротивление

10. gravity – сила тяжести

11. to overcome - преодолевать

12. to design - проектировать

13. straight-and-level flight – горизонтальный полёт

14. to result in – приводить к

15. climb – набор высоты

16. descent - снижение

 

UNIT 7

THE WING

1. wing root – корневая часть крыла

2. to house – вмещать, содержать

3. fuel tank – топливный бак

4. control mechanism – механизм

управления

5. bay – отсек, ниша

6. span – размах

7. chord - хорда

8. sweptback wing – стреловидное крыло

9. sweptforward wing – крыло с обратной стреловидностью

10. spar – лонжерон крыла

11. stringer - стрингер

12. beam - балка

13. transverse - поперечный

14. rib – нервюра, ребро

15. skin - обшивка

16. bending - изгиб

17. shear – срез, сдвиг

18. torsion - кручение

19. to reinforce - усиливать

20. spanwise stiffener – продольный элемент жёсткости

21. payload – полезная нагрузка

22. stressed skin – работающая обшивка

 

UNIT 8

The Tail Group

1. to fit –оснащать, устанавливать

2. tail unit (empennage) – хвостовое оперение

3. stabilizer - стабилизатор

4. elevator – руль высоты

5. fin - киль

6. rudder – руль направления

7. to hinge – крепить шарнирно

8. attitude – пространственная ориентация ЛА

9. directional stability – устойчивость на курсе

10. directional control – управление по курсу

11. auxiliary - вспомогательный

12. adjustable - регулируемый

13. dorsal fin - форкиль

14. balance area – площадь компенсатора

15. hinge moment – шарнирный момент

16. flutter - флаттер

17. dynamic balancing – динамическая балансировка

18. movable - подвижный

19. to avoid - избегать

 

UNIT 9

The Fuselage Structure

1. landing gear - шасси

2. longerone - лонжерон

3. frame – рама, каркас

4. wheel well – ниша шасси

5. bay – отсек, ниша

6. truss type – ферменный тип

7. to weld - сваривать

8. girder type – балочный тип

9. monocoque type – монококовый тип фюзеляжа

10. semimonocoque type – полумонококовый тип фюзеляжа

11. stringer - стрингер

12. longeron - лонжерон

13. stressed-skin fuselage – фюзеляж с работающей обшивкой

14. stiffness - жёсткость

15. to rivet - клепать

16. bulkhead - шпангоут

17. stress - нагрузка

18. assembly – агрегат, сборка

19. to join - соединять

20. light gauge metal – лёгкий листовой металл

 

UNIT 10

The Power Plant

1. essential – существенный, неотъемлемый

2. power plant – силовая установка

3. reliable - надёжный

4. to maintain - поддерживать

5. powered flight – полёт с работающим двигателем

6. to derive – получать, извлекать

7. internal combustion engine – двигатель внутреннего сгорания

8. piston engine – поршневой двигатель

9. jet engine – реактивный двигатель

10. crankshaft – коленчатый вал

11. connecting rod - шатун

12. sonic - звуковой

13. supersonic сверхзвуковой

14. pressure - давление

15. ramjet – прямоточный воздушно-реактивный двигатель

16. pulsejet – пульсирующий воздушно-реактивный двигатель

17. turbojet – турбореактивный двигатель

18. turboprop – турбовинтовой двигатель

19. turbofan – турбовентиляторный двигатель

20. propellant – ракетное топливо

21. jet – реактивная струя

22. exhaust - выхлоп

23. heat exchanger - теплообменник

 

UNIT 11

The Landing Gear

1. landing gear (undercarriage) - шасси

2. take off - взлёт

3. landing - посадка

4. shock - удар

5. to absorb - поглощать

6. pneumatic tyre – пневматическая шина

7. shock-absorbing strut – амортизирующая стойка

8. framework - каркас

9. strut - стойка

10. tail wheel (skid) – хвостовое колесо, опора

11. tricycle landing gear – трёхопорное шасси

12. nose leg – носовая стойка

13. main leg – основная стойка

14. to nose over - капотировать

15. retractable landing gear – втягивающееся шасси

16. linkage - соединение

17. nacelle - гондола

18. swiveling mounting – шарнирное крепление

19. to withstand - выдерживать

20. fully braked landing – остановка с полным торможением

21. to prevent - предотвращать

22. to damage - повреждать

23. electrical charge – электрический заряд

 

UNIT 12

Helicopters

1. rotary wing aircraft (helicopter) - вертолёт

2. rotor – несущий винт вертолёта

3. blade- лопасть

4. to hover - зависать

5. auxiliary - вспомогательный

6. tail rotor – рулевой винт

7. to counteract - противодействовать

8. power plant efficiency – КПД силовой установки

9. advantage (disadvantage) – преимущество (недостаток)

10. to revolve - вращаться

11. fuel consumption – расход топлива

12. range – дальность

13. aerial crane – воздушный кран

14. sling – подвешивать, строп

15. to search - искать

16. airstrip – взлётно-посадочная полоса

 

UNIT 13

The Airplane Designers

1. fuel - топливо

2. radio navigational instruments – радио-навигационное оборудование

3. freight - груз

4. safety - безопасность

5. load - груз

6. to bear – выдерживать нагрузку

7. stress man – инженер по расчёту на прочность

8. sample - образец

9. to test – испытывать

10. to prove – доказать, подтвердить

11. to destroy - разрушать

12. resistance - сопротивление

13. fatigue strength – усталостная прочность

14. to result in – приводить к

15. to result from – вытекать из

16. collapse - разрушаться

17. airworthiness – пригодность к полёту

18. freezing point – температура замерзания

 

 

UNIT 14

Rockets

1. vehicle – транспортное средство

2. missile – реактивный снаряд, ракета

3. to eject – извергать, выталкивать

4. launch vehicle – средство выведения на орбиту

5. satellite - спутник

6. equation - уравнение

7. propellant – ракетное топливо

8. oxidizer- окислитель

9. combustion chamber – камера сгорания

10. nozzle - сопло

11. exhaust - выхлоп

12. to launch – производить пуск

13. spacecraft – космический корабль

14. multistage rocket – многоступенчатая ракета

15. stacked scheme – многоярусная схема

16. to attach - крепить

17. to jettison - отбрасывать

18. booster – ракета-носитель

19. lift-off – старт космического корабля

20. burn-out time – момент выгорания топлива

21. altitude - высота

22. condition – состояние, условие

 


 


 

 


 


<== предыдущая страница | следующая страница ==>
Discuss with your classmates and check in the dictionary if all your translation guesses were correct | ДЛЯ СТУДЕНТОВ ЭКОНОМИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ

Дата добавления: 2014-10-14; просмотров: 392; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.042 сек.