Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Порождающие грамматики

Определение 1.4.1. Порождающей грамматикой ( грамматикой типа 0, generative grammar, rewrite grammar) называется четверка , где N и - конечные алфавиты, , , P конечно и . Здесь - основной алфавит ( терминальный алфавит ), его элементы называются терминальными символами или терминалами (terminal), N - вспомогательный алфавит ( нетерминальный алфавит ), его элементы называются нетерминальными символами, нетерминалами, вспомогательными символами или переменными (nonterminal, variable), S - начальный символ ( аксиома, start symbol). Пары называются правилами подстановки, просто правилами или продукциями (rewriting rule, production) и записываются в виде .

Пример 1.4.2. Пусть даны множества N = {S}, , . Тогда является порождающей грамматикой.

Замечание 1.4.3. Будем обозначать элементы множества строчными буквами из начала латинского алфавита, а элементы множества N - заглавными латинскими буквами. Обычно в примерах мы будем задавать грамматику в виде списка правил, подразумевая, что алфавит N составляют все заглавные буквы, встречающиеся в правилах, а алфавит - все строчные буквы, встречающиеся в правилах. При этом правила порождающей грамматики записывают в таком порядке, что левая часть первого правила есть начальный символ S.

Замечание 1.4.4. Для обозначения n правил с одинаковыми левыми частями часто используют сокращенную запись .

Определение 1.4.5. Пусть дана грамматика G. Пишем , если , и для некоторых слов в алфавите . Если , то говорят, что слово непосредственно выводимо из слова .

Замечание 1.4.6. Когда из контекста ясно, о какой грамматике идет речь, вместо можно писать просто .

Пример 1.4.7. Пусть

Тогда .

Определение 1.4.8. Если , где , то пишем и говорим, что слово выводимо из слова . Другими словами, бинарное отношение является рефлексивным, транзитивным замыканием бинарного отношения , определенного на множестве .

При этом последовательность слов называется выводом (derivation) слова из слова в грамматике G. Число n называется длиной ( количеством шагов ) этого вывода.

Замечание 1.4.9. В частности, для всякого слова имеет место (так как возможен вывод длины 0 ).

Пример 1.4.10. Пусть . Тогда . Длина этого вывода - 3.

Определение 1.4.11. Язык, порождаемый грамматикой G, - это множество . Будем также говорить, что грамматика G порождает (generates) язык L(G).

Замечание 1.4.12. Существенно, что в определение порождающей грамматики включены два алфавита - и N. Это позволило нам в определении 1.4.11 "отсеять" часть слов, получаемых из начального символа. А именно, отбрасывается каждое слово, содержащее хотя бы один символ, не принадлежащий алфавиту .

Пример 1.4.13. Если , то .

Определение 1.4.14. Две грамматики эквивалентны, если они порождают один и тот же язык.

Пример 1.4.15. Грамматика

и грамматика

эквивалентны.

 

Синтаксис (от греч. syntaxis – построение, порядок) – это набор правил построения слов, конструкций и структур текста в языке или системе. Некоторые авторы включают в синтаксис и алфавит. Ошибки, возникающие при написании программы и касающиеся только синтаксиса, выявляются при синтаксическом анализе, осуществляемом транслятором. Под семантикой (от греч. semantikos – обозначающий) понимается смысл каждой синтаксической конструкции в языке или системе.

 

Автоматные языки и грамматики.

В информатике, регулярная грамматика — формальная грамматика типа 3 по иерархии Хомского. Регулярные грамматики определяют в точности все регулярные языки, и поэтому эквивалентны конечным автоматам и регулярным выражениям. Регулярные грамматики являются подмножеством контекстно-свободных.

 


<== предыдущая страница | следующая страница ==>
Формальные языки | Регулярные выражения и языки

Дата добавления: 2015-07-26; просмотров: 204; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.007 сек.