Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Разработка функциональной схемы регулятора

 

При построении регулятора использовались следующие алгоритмы:

ОГР (ограничение), предназначенный для установки пределов вводимого задания. При вводе запредельного значения алгоритм устанавливает предельное;

ЗДН (задание), формирующий сигнал задания. Этот алгоритм снабжён также переключателем вида задания, с помощью которого можно выбирать один из трёх видов задания: ручное, программное или внешнее. При ручном задании сигнал задания устанавливается оператором вручную; при программном задании – изменяется во времени по заданной программе (дополнительно используются алгоритмы программного задания ПРЗ); при внешнем задании сигнал задания либо формируется внутри контроллера с помощью других алгоритмов, либо поступает извне через цепи аналогового входа, либо поступает, извне по сети "Транзит".

РАН (регулирование аналоговое) – это “ядро” аналогового регулятора, используемое при построении ПИД регулятора. Помимо формирования закона регулирования, в алгоритме вычисляется сигнал рассогласования, который фильтруется, вводится зона нечувствительности. Алгоритм, как правило, применяется в сочетании с алгоритмом аналогового вывода АВА (АВБ), который преобразует выходной аналоговый сигнал алгоритма РАН в последовательность импульсов; управляющих исполнительным механизмом. Алгоритм содержит узел настройки, позволяющий автоматизировать процесс настройки регулятора.

РУЧ (ручное управление), позволяющий перевести регулятор из автоматического режима управления в ручной или дистанционный. В ручном режиме алгоритм РУЧ позволяет управлять исполнительным механизмом вручную, при дистанционном управлении сигнал, управляющий исполнительным механизмом, может либо формироваться внутри контроллера с помощью других алгоритмов, либо поступать извне через аналоговые входы контроллера, либо поступать извне по сети Транзит.

ОКО (оперативный контроль контура регулирования), предназначенный для вывода оперативной информации на индикаторы, расположенные на лицевой панели контроллера, и передачи команд от клавиш лицевой панели алгоритмам оперативного управления. Его необходимо задействовать для функционирования алгоритмов оперативного управления – ЗДН и РУЧ.

С помощью специальной группы алгоритмов ввода / вывода организуется связь регулятора с внешними цепями контроллера – датчиками и исполнительными механизмами.

Аналоговые сигналы вводятся в контроллер с помощью АЦП, однако, для того, чтобы “подключиться” к этим сигналам, необходимо задействовать алгоритмы ввода аналогового сигнала: ВАА для группы А и / или ВАБ для группы Б. В этих алгоритмах производиться калибровка аналогового сигнала, при которой, путём смещения корректируется “нуль”, а путём масштабирования – диапазон изменения входного сигнала. Выходные сигналы алгоритма ВАА представляют собой аналоговые сигналы, поступающие на вход контроллера.

Сигналы на аналоговом выходе контроллера формируются аналогично. Для этого используются алгоритмы аналогового вывода АВА (группа А) и / или АВБ (Б). В этих алгоритмах также корректируется “нуль” и диапазон изменения выходного сигнала.

Сигнал задания поступает на вход алгоритма РАН, на второй вход этого алгоритма поступает сигнал от датчика (через алгоритм ВАА). Выходной сигнал алгоритма РАН, через алгоритмы РУЧ и ABA, поступает на аналоговый выход контроллера.

С помощью алгоритма ОКО организуется оперативное управление. Функции, выпол­няемые при оперативном управлении, задаются путём конфигурирования входов алгоритма ОКО.

Сигнал, поступающий на вход "здн" этого алгоритма, всегда выводится на верхний цифровой индикатор "задание" лицевой панели контроллера независимо от того, к выходу какого алгоблока подключается вход "здн". Однако, если сигнал задания нужно не только контролировать, но и изменять вручную, вход "здн" должен обязательно подключаться к первому выходу алгоритма ЗДН.

На нижний цифровой индикатор избирательного контроля в положении "вх", "е", и "вых" поступают сигналы, приходящие на входы соответственно "вх", "е" и "вр" алгоритма ОКО. Вход "вх" подключается к сигналу, представляющему регулируемый параметр. Вход "е" обычно связывается с выходом "Уе" алгоритма РАН, на котором формируется сигнал рассогласования. Вход "вр" (выход регулятора) подключается к выходу алгоблока, характери­зующего выходной сигнал регулятора. Сигнал на этом входе поступает не только на нижний цифровой индикатор в положении "вых", но также на шкальный индикатор. По шкальному индикатору ориентировочно (с разрешающей способностью 5%) контролируется выходной сигнал регулятора независимо от того, какой сигнал в данный момент выводится на цифро­вой индикатор избирательного контроля. Для регулятора выход­ным сигналом считается сигнал на выходе датчика положения исполнительного механизма, который заведён на второй вход алгоритма ВАА, однако, это может быть какой-либо другой сигнал.

Если вход "вр" алгоритма ОКО может подключаться к выходу разных алгоблоков (в зависимости от того, какой сигнал считается выходным), то вход "руч" алгоритма ОКО обя­зательно должен подключаться к первому выходу алгоритма РУЧ. Только в этом случае с помощью клавиш лицевой панели можно менять режим управления и управлять исполни­тельным механизмом вручную.

Алгоритм ОКО имеет два настроечных входа W0 и W100. На этих входах обычно за­даются константы, определяющие технические единицы, в которых контролируются сигна­лы задания, входа и рассогласования (для всех трёх сигналов технические единицы одина­ковы). Каждая из констант на входах W0 и W100 может задаваться в диапазоне от -1999 до 9999 с шагом 1, Константа на входе W0 определяет число, соответствующее 0 % сигнала за­ дания, входа и рассогласования, а константа на входе W100 число, соответствующее 100 % этих сигналов.

На выходе алгоритма РАН формируется сигнал рассогласования Уе = Хздн - Хвх. Если регулируемый параметр Хвх меньше сигнала задания Хздн, то сигнал Уе – положителен, в противном случае – отрицателен. При контроле сигнала рассогласования, обычно, принято знаку этого сигнала приписывать противоположный смысл. Поэтому сигнал на входе "е" алгоритма ОКО инвертируется.

 

8.Организация безударных переходов.

Безударный переход- отсутствие резких скачков при переходе от одного значения сигнала управляющего воздействия к другому.

Организация безударного перехода при выходе из строя системы управления является одной из важнейших задач при управлении технологическими процессами.

Рассмотрим автоматическую систему регулирования давления в НЯ. В качестве регулирующего устройства используется контроллер РемиконтР-130.

Существует несколько способов организации безударного перехода:

· применение резервного контроллера Ремиконт Р-130;

· применение ручного управления.

По заданию преподавателя необходимо осуществить безударный переход в случае отказа внешнего регулятора.

Для того чтобы система даже после отказа контроллера Р-130 оставалась в автоматическом режиме управления используется резервный контроллер той же модели и модификации, связь между которыми осуществляется с помощью сети «Транзит», предусмотренной разработчиками Ремиконта Р-130.Сетевое взаимодействие осуществляется посредствам библиотечных алгоритмов интерфейсного вывода ИНВ и ввода интерфейсного ВИН.

При отказе контроллера или отключении питания срабатывает специальное реле, шунтирующее контроллер и сохраняющее целостность сети «Транзит». Отказавший контроллер при этом выпадает из обмена информацией. Реле, шунтирующее интерфейсную цепь, расположено в блоке питания БП-1. Поэтому для сохранения целостности сети «Транзит» кабель этой сети не должен отключатся от блока питания (однако само питание от этого блока может быть отключено).

Каждому контроллеру, подключенному к сети «Транзит», присваивается логический (системный) номер. Есть ряд особенностей относительно номеров контроллера, основным из которых является то, что в одной сети «Транзит» не должно быть двух или более контроллеров, имеющих одинаковый системный номер. В алгоритме ВИН устанавливается системный номер контроллера – источника. Кроме того, для каждого входа алгоритма ВИН устанавливается номер сигнала, передаваемого выбранным контроллером-источником. Именно этот сигнал будет сформирован на данном выходе алгоритма ВИН и затем поступит на вход других алгоритмов, соединенных по конфигурации с данным выходом алгоритма ВИН. ИНВ- передает в сеть сигналы поступающие на вход алгоритма ИНВ. ПОР- пороговый контроль. Контроль за выходом сигнала или разности двух сигналов из ограниченной справа области допустимых значений.

Таким образом, между алгоблоками равных контроллеров с помощью сети «Транзит» и алгоритмов интерфейсного ввода-вывода устанавливается виртуальный (кажущийся) канал связи. Работают контроллеры при этом так, как будто этот канал в действительности существует.

Для перевода системы из автоматического режима в ручной используется блок ручного управления БРУ.

Система функционирует в обычном автоматизированном режиме (ключ замкнут на «А»). Как только происходит сбой, оператор переводит систему в режим ручного управления, для этого он на БРУ нажимает соответствующую кнопку, что переводит ключ в положение «Р» (означает ручной режим управления). При отказе в системе реализуется режим отступления к последнему значению сигнала задания. И затем благодаря ручномузадатчику имеет возможность самостоятельно регулировать системой, не давая ей выйти из строя, пока обслуживающий персонал будет устранять неполадку.

При переводе системы с автоматического в ручное управление, заводами изготовителями блока БРУ, преобразователя и ИМ схемно обеспечивается безударный переход.

Общая схема обеспечения безударного перехода показана на рис8-.1,2

           
   
 
 
Р-130
   
Р-130
 

 


Рис. 8.1 Обеспечение безударного перехода

 

 

 

Рис 8.2. Простейшая схема обеспечения безударного перехода.

 

 

 

9. Организация внешних соединений САУ.

 

Рис 9.1.Техническая схема САУ

 

МАС – модуль аналогового сигнала;

КБС-2 – клеммно-блочное соединение для дискретных сигналов;

БК – блок контроллеров;

ПЛК – программируемый логический контроллер Ремиконт Р-130;

БП – блок питания.

ИП –измерительный преобразователь температуры смеси

БРУ –блок ручного управления

ЭПП –электропневматический позиционер

ПИМ–пневматический исполнительный механизм

 

 

Выводы.

Целью проекта была техническая реализация САУ уровнем в напорном ящике БДМ.

В ходе разработки курсового проекта было проведено ознакомление с системой управления уровнем в напорном ящике и выяснен ряд задач, которые стоят на производстве. Произведена организация безударного перехода, при отказе РУ, которым был выбран контроллер Ремиконт Р-130. Все выбранные ТС обеспечивают достаточные точность, быстродействие и надёжность. С помощью выбранного контроллера реализуется индикация параметров процесса на операторской станции, а также возможность изменения, с неё, настроек регулятора и задания системы.

Так же были разработаны техническая структура системы автоматизации. Была разработана спецификация средств автоматизации.

 

Список литературы

Источники:

1. МЕТОДИЧЕСКОЕ ПОСОБИЕ «Реализация автоматических регуляторов на базе малоканальных микропроцессорных контроллеров РЕМИКОНТ Р-130»

2. Блоки ручного управления БРУ. Руководство по эксплуатации ОАО АБС ЭЭиМ Автоматизации

3. http://www.amg-pesch.de/index.php?module=products&index[products][action]=details&index[products][category]=25&index[products][data][products_id]=3&lang=ru

4. http://www.smc-pneumatik.ru/cat.php?sub=90

5. http://www.metran.ru/products/siz/dras/ele/r8700/

6. Ю.С. Жукова Учебное пособие «Управление качественными показателями бумаги на БДМ»

7. Ю.С. Жукова Учебное пособие «Автоматизация процессов производства бумаги»

8. «Технология целлюлозно-бумажного производства» Том 3

9. Дятлова Е.П. Кондрашкова Г.А. Правила оформления выпускных квали фикационных работ (дипломных проектов и работ): Методические указания / ГОУВПО СПбГТУРП. СПб., 2005г., 30с.

10. Н.П. Серебряков «Проектирование автоматизированных систем», учебно-методическое пособие по курсовому проектированию. СПб., 2011

 

 

 

 


<== предыдущая страница | следующая страница ==>
Выбор структуры регулятора | ГРАЖДАНСКО-ПРАВОВОЙ ДОГОВОР

Дата добавления: 2015-07-26; просмотров: 431; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.005 сек.