Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Пример 4. Требуется определить толщину бетонного подстилающего слоя пола при нагрузке от валов, укладываемых на пол краном

Требуется определить толщину бетонного подстилающего слоя пола при нагрузке от валов, укладываемых на пол краном. Длина вала 7 м, диаметр 40 см, вес 1 м вала 9,8 кН (0,98 т). Валы могут располагаться по отдельности или в штабелях в два ряда по высоте. Покрытие пола отсутствует, бетонный подстилающий слой является покрытием.

Грунт основания - суглинок. Уровень грунтовых вод на отметке «-1,5 м», следовательно, пол находится в зоне опасного капиллярного поднятия грунтовых вод и в связи с этим требуется устройство наливной гидроизоляции из слоя щебня с пропиткой битума.

Определим расчётные параметры.

Нагрузка от одного вала со следом прямоугольной формы, согласно п. 4, относится к нагрузкам простого вида, а от нескольких рядом лежащих валов - к нагрузкам сложного вида.

Для грунта основания из суглинка, расположенного в зоне опасного капиллярного поднятия вод, находим по табл. 2 К0 = 45 Н/см3.

Для подстилающего слоя примем бетон класса по прочности при сжатии В22,5. Тогда для помещения, где выполняются полы с устройством гидроизоляции (согласно п. 2 группа V) и укладка валов осуществляется кранами, примем по табл. 1 Rδt = 0,675 МПа, Еб = 28500 МПа. Согласно п. 15 рассмотрим расчётные схемы нагрузок (рис. 3). Расчётные центры О, согласно табл. 8, поместим в центре тяжести следов валов, а ось ОУ расположим параллельно следам валов.

Рис. 3 Схема расположения в плане нагрузок от валов, расчётных центров О, осей координат и разделения следов нагрузок на элементарные площадки P1 = 14,7 кН/м вала; Р2 = 19,6 кН/м вала;

а, б, в, г - разновидности нагрузок и количество следов опирания

Зададимся ориентировочно согласно п. 22 h = 10 см. Тогда по п. 10 принимаем l = 48,5 см. Длина следа вала а > 12,2l = 592 см. Согласно п. 4 ар = 12,2l = 592 см. Расчётная ширина следа вала по п. 5 bр = b = 0,1l = 4,9 см.

Расчёт 1 Определим напряжение растяжения в бетоне плиты при изгибе σрI для нагрузки от одного вала расчётной длиной ар = 12,2l = 592 см. Расчётная нагрузка Рр = 5,92 · 9,8 = 58 кН.

При значениях α = ар/l = 12,2 и β = bр/l = 0,1 по табл. 4 найдём K1 = 18,18.

По формуле (9): МрI = К1 · Рp = 18,18 · 58 = 1054,4 Н · см/см.

По формуле (7):

Расчёт 2 Определим напряжение растяжения в бетоне плиты при изгибе σрII для нагрузки, приведённой на рис. 3а.

Изгибающий момент от нагрузки по следу, для которого x = 0, определим как от нагрузки простого вида со следом прямоугольной формы. Расчётная нагрузка Р0 = 5,92(9,8 + 9,8/2) = 5,92 · 14,7 = 87 кН.

По величинам α = ар/l = 12,2 и β = bр/l = 0,1 по табл. 4 найдём K1 = 18,18.

По формуле (9): М0 = K1 · P0 = 18,18 · 87 = 1635,6 Н · см/см.

Для определения изгибающего момента в расчётном центре О от нагрузок по следу, для которого x = 40 см, разделим этот след на элементарные площадки согласно п. 18. Нагрузки, приходящиеся на каждую элементарную площадку, определяем по формуле (15):

Определим суммарный изгибающий момент ΣMi от нагрузок, расположенных вне расчётного центра О1. Расчётные данные приведены в табл. 13.

Таблица 13

Расчётные данные при нагрузке с двумя следами опирания

I xi yi хi/l yi/l К4 по табл. 7 Рi кН ni кол-во нагрузок Mi = ni · К4 · Pi
12,25 0,82 0,25 13,07 3,6 94,1
36,75 0,82 0,76 17,69 3,6 127,4
61,25 0,82 1,26 14,00 3,6 100,8
85,75 0,82 1,77 8,21 3,6 59,1
122,5 0,82 2,53 2,44 7,2 35,1
171,5 0,82 3,54 -0,20 7,2 -2,9
220,5 0,82 4,55 -0,44 7,2 -6,3
269,5 0,82 5,57 -0,20 7,2 -2,9
295,0 0,82 6,08 -0,12 0,29

ΣМi = 404,4 Н · см/см.

Расчётный изгибающий момент от колеса автомобиля и станка по формуле (13):

МрII = М0 + ΣMi = 1635,6 + 404,4 = 2040 Н · см/см

Напряжение растяжения в плите при изгибе по формуле (7):

Расчёт 3 Определим напряжение растяжения в бетоне плиты при изгибе σрIII для нагрузки, приведённой на рис. 3б.

Изгибающий момент от нагрузки по следу, для которого x = 0, так же, как и в предыдущем расчёте, определим как от нагрузки простого вида со следом прямоугольной формы. Тогда расчётная нагрузка Р0 = 5,92(9,8 + 9,8) = 5,92 · 19,6 = 116 кН; К1 = 18,18; М0 = К1 · Р0 = 18,18 · 116 = 2108,9 Н · см/см.

Определим суммарный изгибающий момент ΣMi от нагрузок, расположенных вне расчётного центра О2. Расчётные данные приведены в табл. 14.

Таблица 14

Расчётные данные при нагрузке с двумя следами опирания

I xi yi хi/l yi/l К4 по табл. 7 Рi кН ni кол-во нагрузок Mi = ni · К4 · Pi
12,25 0,82 0,25 13,07 3,6 188,2
36,75 0,82 0,76 17,69 3,6 254,8
61,25 0,82 1,26 14,00 3,6 201,6
85,75 0,82 1,77 8,21 3,6 118,2
122,5 0,82 2,53 2,44 7,2 70,2
171,5 0,82 3,54 -0,20 7,2 -5,8
220,5 0,82 4,55 -0,44 7,2 -12,6
269,5 0,82 5,57 -0,20 7,2 -5,8
295,0 0,82 6,08 -0,12 0,29 0,1

ΣMi = 808,7 Н · см/см.

Расчётный изгибающий момент от колеса автомобиля и станка по формуле (13):

МрIII = М0 + ΣМi = 2108,9 + 808,7 = 2917,6 Н · см/см

Напряжение растяжения в плите при изгибе по формуле (7):

Расчёт 4 Аналогично определим напряжение растяжения в бетоне плиты при изгибе σpIV для нагрузки согласно рис. 3в. Расчётная нагрузка Р0 = 116 кН; K1 = 18,18; М0 = 2108,9 Н · см/см. Расчётные данные приведены в табл. 15.

Таблица 15

Расчётные данные при нагрузке с четырьмя следами опирания

I xi yi хi/l yi/l К4 по табл. 7 Рi кН ni кол-во нагрузок Mi = ni · К4 · Pi
12,25 0,82 0,25 13,07 3,6 94,1
36,75 0,82 0,76 17,69 3,6 127,4
61,25 0,82 1,26 14,00 3,6 100,8
85,75 0,82 1,77 8,21 3,6 59,1
122,5 0,82 2,53 2,44 7,2 35,1
171,5 0,82 3,54 -0,20 7,2 -2,9
220,5 0,82 4,55 -0,44 7,2 -6,3
269,5 0,82 5,57 -0,20 7,2 -2,9
295,0 0,82 6,08 -0,12 0,29
12,25 0,82 0,25 13,07 4,8 125,5
36,75 0,82 0,76 17,69 4,8 169,8
61,25 0,82 1,26 14,00 4,8 134,4
85,75 0,82 1,77 8,21 4,8 78,8
122,5 0,82 2,53 2,44 9,6 46,8
171,5 0,82 3,54 -0,20 9,6 -3,8
220,5 0,82 4,55 -0,44 9,6 -8,4
269,5 0,82 5,57 -0,20 9,6 -3,8
295,0 0,82 6,08 -0,12 0,4 -0,1
12,25 1,65 0,25 -18,86 3,6 -135,8
36,75 1,65 0,76 -14,07 3,6 -101,3
61,25 1,65 1,26 -8,88 3,6 -63,9
85,75 1,65 1,77 -5,36 3,6 -38,6
122,5 1,65 2,53 -2,78 7,2 -40,0
171,5 1,65 3,54 -1,35 7,2 -19,4
220,5 1,65 4,55 -0,57 7,2 -8,2
269,5 1,65 5,57 -0,08 7,2 -1,2
295,0 1,65 6,08 -0,07 0,29

ΣMi = 534,8 Н · см/см

MPIV = M0 + ΣMi = 2108,9 + 534,8 = 2643,7 Н · см/см

Таким образом, наибольшее напряжение растяжения в бетоне плиты при изгибе σрIII = 1,02 МПа получилось для нагрузке согласно рис. 3б. Полученное значение σрIII = 1,02 МПа более Rδt = 0,675 МПа, вследствие чего согласно п. 22 повторим расчёт, задавшись большим значением h.

Расчёт 5Для повторного расчёта ориентировочно зададимся h = 18 см. Определим напряжение растяжения в бетоне плиты при изгибе σpV для нагрузки согласно рис. 3г, на котором показано, как следует из предыдущего расчёта, наиневыгоднейшее расположение валов.

По п. 10 l = 75,3 см.

Длина следа вала 700 см = 9,3l < 12,2l. Поэтому согласно п. 4 примем расчётную длину следа вала ар = 9,3l = 700 см. Расчётная ширина следа вала по п. 5 bp = b = 0,1l = 7 см. Расчётная нагрузка от вала длиной 700 см Рр = 7 · 19,6 = 136,2 кН.

При значениях α = ар/l = 9,3 и β = bр/l = 0,1 по табл. 4 найдём K1 = 23,95.

По формуле (9) определим: М0 = К1 · Р0 = 23,95 · 136,2 = 3261,99 Н · см/см.

Нагрузки, приходящиеся на каждую элементарную площадку, определяем по формуле (15):

Определим суммарный изгибающий момент ΣMi от нагрузок, расположенных вне расчётного центра О. Расчётные данные приведены в табл. 16.

Таблица 16

Расчётные данные при повторном расчёте

I xi yi хi/l yi/l К4 по табл. 7 Рi кН ni кол-во нагрузок Mi = ni · К4 · Pi
0,53 0,13 45,41 2,94 534,03
0,53 0,40 47,96 2,94 564,01
0,53 0,66 43,47 2,94 511,21
0,53 0,93 36,08 2,94 424,30
0,53 1,33 24,20 5,88 569,18
0,53 1,86 12,16 5,88 286,00
0,53 2,66 3,28 11,76 154,29
0,53 5,92 -0,23 16,20 -14,90

ΣMi = 3028,12 Н · см/см.

Расчётный изгибающий момент по формуле (13):

MpV = M0 + ΣMi = 3261,99 + 3028,12 = 6299 Н · см/см

Напряжение растяжения в плите при изгибе по формуле (7):

что меньше Rδt = 0,675 МПа менее чем на 5 %.

Принимаем подстилающий слой из бетона класса по прочности при сжатии В22,5 толщиной 18 см.

Приложение 4


<== предыдущая страница | следующая страница ==>
Пример 3. Требуется определить толщину бетонного подстилающего слоя пола в машиностроительном цехе при нагрузках от станков автоматизированной линии и автомобилей | Определение показателя теплоусвоения пола

Дата добавления: 2015-07-26; просмотров: 162; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.004 сек.