Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Роль эксперимента и теории в процессе познания природы. Физические законы. Основные элементы физической картины мира

Читайте также:
  1. I. Основные принципы и идеи философии эпохи Просвещения.
  2. II) Методы теоретического уровня научного познания
  3. II. Описание экспериментальной установки:.
  4. II. Описание экспериментальной установки:.
  5. II. ОСНОВНЫЕ ФАКТОРЫ РАДИАЦИОННОЙ ОПАСНОСТИ И МЕДИЦИНСКИЕ ПОСЛЕДСТВИЯ ОТ ИХ ВОЗДЕЙСТВИЯ НА ОРГАНИЗМ.
  6. II. Проблема источника и метода познания.
  7. III. Основные политические идеологии современности.
  8. IV. В теории правового государства выделяются следующие элементы: принцип верховенства права, разделения власти на 3 ветви, независимости суда, конституционного статуса граждан.
  9. IV.5. Основные тенденции развития позднефеодальной ренты (вторая половина XVII—XVIII в.)
  10. V. АКУСТИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД И МАССИВОВ. ОСНОВНЫЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА АКУСТИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД

Вопросы для контроля знаний

1. Какова структура естественнонаучного познания?

2. Какая разница существует между эмпирическими и теоретическими направлениями исследования?

3. Что такое научный метод и на чем он основывается?

4. В чем заключается единство научного метода?

5. Дайте характеристику общенаучных и конкретно-научных методов исследования.

6. Каковы основные методологические концепции развития современного естествознания?

7. Какие этические проблемы актуальны для современного естествознания?

8. Что называют парадигмой в науке?

9. Какие условия необходимы для проведения научных экспериментов?

10. Чем язык науки отличается от обычного человеческого
языка?

 

 

Благодаря важным открытиям развивается не только сама физика, но и другие естественные науки: химия, астрономия, биология и др. Физика – одна из основ естественных наук. Изучение физики имеет важнейшее значение и для развития техники: люди получили возможность сконструировать самолеты и космические корабли, электронные приборы, компьютерную технику и многое другое.

Многие свои знания люди получают из наблюдений. Ученые-физики также используют в своей работе метод наблюдений. Часто применяют и другой научный метод – опыт. В этом случае обдуманно, с определенной целью создают условия для протекания того или иного явления и затем изучают его. Опыт – важнейший источник физических знаний.

Как правило, опыты проводятся в специальных лабораториях, с использованием лабораторных приборов и оборудования. Изучая физические явления, стремятся не только выяснить их причины, но и наиболее точно описать их, выразить количественные соотношения. Для этого приходится проводить измерения физических величин.

Измерить физическую величину – значит сравнить ее с однородной величиной, принятой за единицу величины. При проведении измерений используют разнообразные измерительные приборы и инструменты – линейки, термометры, секундомеры, амперметры и др. Для каждой физической величины существуют свои единицы измерения. Например, длину измеряют в метрах, площадь – в квадратных метрах, температуру – в градусах Цельсия. Для удобства в разных странах стараются пользоваться одинаковыми единицами. Наибольшее распространение получила Международная система единиц (СИ).

При изучении физических явлений устанавливают связи между величинами. Если связь между величинами носит устойчивый характер, ее называют физическим законом, который является математическим выражением закона природы.

Объяснить, почему то или иное явление протекает так, а не иначе, выяснить причину явления позволяет физическая теория. Курс физики дает возможность не только объяснить, но и предсказать ход явлений, свойства тел.

Каждая физическая теория описывает определенные явления окружающего материального мира. Все они связаны между собой, поскольку материальный мир един. Совокупность всех наших знаний о мире представляет собой физическую картину мира.

По мере развития науки происходит углубление и уточнение знаний о материальном мире. Не все свойства материального мира и законы природы уже известны и изучены. Однако развитие науки свидетельствует о том, что материальный мир познаваем и процесс познавания бесконечен.

Эксперимент — это научно поставленный опыт, с помощью которого объект или воспроизводится искусственно, или ставится в точно учитываемые условия.

Отличительной особенностью научного эксперимента является то, что его способен воспроизвести каждый исследователь в любое время. Найти аналогии в различиях — необходимый этап научного исследования.

Эксперимент может быть проведен на моделях, т. е. на телах, размеры и масса которых пропорционально изменены по сравнению с реальными телами. Результаты модельных экспериментов можно считать пропорциональными результатам взаимодействия реальных тел. Возможно проведение мысленного эксперимента, т. е. представить себе тела, которых вообще не существует в реальности, и провести над ними эксперимент в уме. В современной науке надо проводить и идеализированные эксперименты, т. е. мысленные эксперименты с применением идеализаций.

 

1. Естественнонаучное представление о мире восходит к Галилею и Ньютону. Окружающий нас мир состоит из частиц, связанных между собой силами. Законы классической механики Ньютона определяют, как движутся тела, вещество (совокупности частиц) в пространстве и времени под действием сил. При этом обнаружилось нечто удивительное: эти законы применимы как к очень большим, так и очень малым телам.

Небесная механика, техническая механика (механика жидкостей и газов, гидравлика, сопротивление материалов, теория механизмов и машин и т.д.), теория теплоты были сформулированы на основе механики Ньютона. Ее успех привел к тому, что механика была принята как основа всех естественных наук. Предполагалось, что для объяснения явлений природы достаточно указать их механизм.
Ньютоновская картина мира была дополнена новой физической реальностью - полем. Представление о классическом электромагнитном поле возникло в недрах теории Фарадея-Максвелла.

При изучении электрических и магнитных явлений пришло осознание того, что не поведение заряженных частиц (тел), а поведение чего-то находящегося между ними, то есть поля, может быть существенно для понимания явлений в мире.

Принципиально новый момент состоял в том, что поле понадобилось считать не формой движения какой-либо среды (эфира), а специфической формой материи с весьма необычными свойствами. В отличие от частиц, классическое поле беспрепятственно создается и уничтожается (испускается и поглощается зарядами), обладает бесконечным числом степеней свободы и не локализуется в определенных точках, но может распространяться, передавая взаимодействие (сигнал) от одной частицы к другой с конечной скоростью.

Логически неизбежность понятия поля следует от отказа от мгновенного действия частиц друг на друга на расстоянии - нужно заполнить пространство между взаимодействующими частицами передающим это взаимодействие от точки к точке агентом - полем. Теория относительности была следующим этапом развития теории поля. Теория относительности представляет мир в виде четырехмерного континуума: физические процессы протекают в четырехмерном пространстве (сt, х, у, z). Расстояние между двумя точками в трехмерном пространстве и время между двумя событиями не являются абсолютными, как в механике Ньютона.
Событием, изменившим представление о том, что реально в физическом мире, было создание квантовой механики, атомной физики. В 1900 г. Планк сделал выдающееся открытие, оказавшее влияние на все последующее развитие физики. Тепловое излучение тел не удалось объяснить на основе термодинамики и электродинамики. Чтобы прийти к результатам, согласующимися с опытом, Планк предположил, что излучение должно трактоваться, как состоящее из отдельных порций, квантов энергии, где h = 6,62× 10-34 Дж× с - постоянная Планка, а v- частота.

Идею о квантах энергии использовали: Бор, который с ее помощью сумел понять строение и стабильность атома; де-Бройль, выдвинувший идею о соответствии между движением частиц и связанных с ними волн (дуализм); Гейзенберг, сформулировавший принцип неопределенности - в мире атомов мы лишены возможности точно предсказывать поведение частиц - можно говорить только о вероятностном статистическом описании. Квадрат волновой функции, входящей в уравнение Шредингера, определяет только вероятность событий в микромире.

Развитие атомной физики (после открытий радиоактивности, опытов Резерфорда) к 30-м годам привело к следующим представлениям о структуре вещества в нашем мире. Элементарными кирпичиками мироздания были три частицы: протон, нейтрон и электрон. Атомы состоят из электронов, образующих оболочки и ядер. Ядро по своему строению резко отличается от атома. Атом почти пуст, ядро же заполнено достаточно плотно. Какие силы связывают части ядра? Электромагнитная сила удерживает электроны вокруг ядра. Ядро состоит из протонов и нейтронов. Нейтрон - нейтральная частица. Уже поэтому электрические силы не подходят для описания взаимодействия в ядрах. В ядре между протонами и нейтронами должны действовать силы нового типа - сильные силы (сильные взаимодействия).
Весь список фундаментальных составных частей вещества не исчерпывается только этими тремя частицами. К 60-м годам были открыты уже десятки частиц. Отличительное свойство, которое делало электроны, протоны и нейтроны непременными составными частями вещества, - их стабильность.

Отметим, что в те же годы была созданаквантовая теория поля - новые представления, в которых частицы и поля стали выступать на совершенно равных правах в качестве двух разных проявлений одного объекта - квантованного поля. Применение методов квантовой механики для объяснения свойств поля было связано с преодолением трудностей и психологических - две формы материи - частицы и поля - представлялись с классической точки зрения совершенно различными сущностями.

Квантовое поле представляет собой синтез понятий классического поля типа электромагнитного и поля вероятности квантовой механики. По современным представлениям оно является наиболее фундаментальной и универсальной формой материи, лежащей в основе всех ее проявлений. На смену как полям, так и частицам классической физики пришли единые физические объекты - квантованные поля. Что же касается взаимодействия, элементарным актом его на корпускулярном уровне является мгновенное и локальное превращение одних частиц в другие. Привычное взаимодействие в виде сил, действующих со стороны одной частицы на другую есть вторичный эффект, возникающий благодаря тому, что две частицы обмениваются в результате последовательных актов испускания и поглощения третьими частицами, вообще говоря, иного сорта. В релятивистской квантовой теории поля частицы могут рождаться и уничтожаться - совершенно так же, как создается и поглощается зарядами классическое электромагнитное поле. При этом заряженные частицы рождаются и поглощаются с обязательным сохранением полного заряда, и один из выводов теории - неизбежность существования античастиц.

Дадим краткую характеристику других частиц. Фотон - частица, квант электромагнитного излучения. Масса и электрический заряд фотона равны нулю. Нейтрино - гипотезу об этой частице выдвинул Паули в начале 30-х годов для объяснения -распада. Она электрически нейтральна; если масса у нее есть, то она очень мала. Существует, как предполагают, по крайней мере три различных вида нейтрино. Мюон - отрицательно заряженная частица, примерно в 200 раз тяжелее электрона.

Мюоны, электроны и нейтрино относятся к классу частиц, называемых лептонами. К ним же относится еще одна t
-частица
(1975 г.) (тау-лептон). К 60-м годам было открыто много нестабильных частиц, имеющих малое время жизни, подобных протону и нейтрону. Их назвали адронами - они принимают участие в ядерных взаимодействиях. В 1963 г. была высказана идея о том, что все адроны построены из некоторого числа действительно элементарных “кирпичиков”, которые Гелл Манн назвал кварками. Заряд кварков может быть равным + 2/3 или - 1/3 от заряда электрона. Поиски свободных кварков велись очень тщательно, но безуспешно. Считается, что кварки не могут существовать в свободном состоянии: они “заперты” внутри адрона. В 1983 г. были открыты, предсказанные теоретически, промежуточные векторные бозоны ( и ) - сверхтяжелые двойники фотона - частицы, которые необходимы для объяснения взаимодействий типа -распада. Частицы, обеспечивающие взаимодействие между кварками, были названы глюонами.
2. В результате открытия электрона, протона и нейтрона вновь возник извечный вопрос о строении вещества, хотя суть его изменилась. Цель заключается теперь не в том, чтобы продолжить список этих частиц, а в другом: понять основополагающие принципы, которые определяют, почему природа - частицы, ядра, атомы, звезды,... - такова, какая она есть. Эволюция наших представлений о природе говорит о том, что изучение элементарных частиц, по-видимому, самый верный путь к пониманию фундаментальных законов в нашем мире. Подтверждается это и тем фактом, что изучение элементарных частиц привело к модели развития Вселенной на самых ранних этапах ее развития (Модель Большого Взрыва; Гамов,1948 год). Одни и те же физические представления необходимы для понимания и очень малого (микромир), и очень большого (Вселенная).
Каким образом возникла и как устроена наша Вселенная? Возвратимся к началу лекции и снова с позиций физики ХХ века вернемся к вопросу об устройстве Вселенной. Она состоит из частиц, между которыми действуют четыре вида фундаментальных взаимодействий: гравитационное, электромагнитное, сильное и слабое.

а) Гравитационное взаимодействие действует между всеми частицами и имеет характер притяжения. Несмотря на свою исключительную слабость (атом водорода, удерживаемый лишь силами гравитации имел бы размеры порядка Вселенной) гравитационные силы играют определяющую роль в больших масштабах. Именно гравитация удерживает вместе основные структуры Вселенной. Она скрепляет звезды, удерживает планеты на орбитах, нас на Земле

б) Электромагнитная сила удерживает электроны в атомах, соединяет атомы в молекулы.

в)Сильная (ядерная) сила, действует между адронами (мезоны, протоны, нейтроны). Эта сила не зависит от электрического заряда частиц. Радиус ее действия ~10-13 см.

Сильное взаимодействие, связывая протоны и нейтроны, приводит к существованию большого числа различных атомных ядер, а следовательно атомов и химических элементов, необходимых для построения множества разнообразных молекул.

г) Слабая сила - ее действие также не зависит от электрического заряда. Она была введена для объяснения b-распада ядер. Это распад внутри ядра одного из протонов или нейтронов

или

p - протон; n - нейтрон; е- - электрон; е+ - позитрон; ve
- электронное нейтрино; - электронное антинейтрино.

Слабая сила инициирует процесс горения звезд, создавая возможность для образования химических элементов. Если два протона в атомах водорода соударяются, то иногда один благодаря слабой силе преобразуется в нейтрон, испуская позитрон и нейтрино, а нейтрон и протон соединяются, образуя дейтрон (тяжелый водород). Вслед за этим идут другие, более быстро текущие ядерные реакции, определяемые сильным взаимодействием.

Четыре силы обеспечивают взаимодействие между элементарными (или фундаментальными) частицами. Элементарными называют частицы, которые на современном уровне знания не состоят из более элементарных частиц.

 


<== предыдущая страница | следующая страница ==>
Динамика развития науки. Принцип соответствия | Относительность механического движения. Системы отсчета

Дата добавления: 2014-02-26; просмотров: 1941; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.004 сек.