Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Феррорезонансные явления

Читайте также:
  1. VI. НА ПОДСТУПАХ К ИЗУЧЕНИЮ ЯВЛЕНИЯ ЭТОСА
  2. БИОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ
  3. Виды связей между явлениями.
  4. Возвращение искового заявления: сущность, основания и правовые последствия.
  5. Вопрос 1. Виды связей между явлениями
  6. ГАЗЕТНЫЕ ОБЪЯВЛЕНИЯ
  7. ДИВИЗИОНАЛЬНЫЕ СТРУКТУРЫ – ПРИЧИЫ ПОЯВЛЕНИЯ И ФОРМЫ.
  8. Динамические проявления горного давления
  9. Дополнительные аудиторские процедуры в случае выявления факторов, касающихся допущения непрерывности деятельности аудируемого лица
  10. Изучение тенденции развития явления.

Различают феррорезонанс в последовательной цепи (феррорезонанс напряжений) и феррорезонанс в параллельной цепи (феррорезонанс токов).

Рассмотрим первый из них на основе схемы на рис. 1. Для этого строим (см. рис. 2) прямую зависимости , определяемую соотношением

. (1)

Далее для двух значений сопротивлений ( и ) строим графики зависимостей : для -согласно соотношению (кривая на рис. 2); для -согласно выражению (кривая на рис. 2).

Точка пересечения кривой с прямой соответствует феррорезонансу напряжений. Феррорезонансом напряжений называется такой режим работы цепи, содержащей последовательно соединенные нелинейную катушку индуктивности и конденсатор, при котором первая гармоника тока в цепи совпадает по фазе с синусоидальным питающим напряжением. В соответствии с данным определением при рассмотрении реальной катушки действительная вольт-амперная характеристика (ВАХ) цепи, даже при значении сопротивления последовательного включаемого резистора , в отличие от теоретической (кривая на рис. 2) не касается оси абсцисс и смещается влево, что объясняется наличием высших гармоник тока, а также потерями в сердечнике катушки. С учетом последнего напряжение на катушке индуктивности , где -сопротивление, характеризующее потери в сердечнике, в режиме феррорезонанса не равно напряжению на конденсаторе.

Из построенных результирующих ВАХ цепи видно, что при увеличении питающего напряжения в цепи имеет место скачок тока: для кривой -из точки 1 в точку 2, для кривой -из точки 3 в точку 4. Аналогично имеет место скачок тока при снижении питающего напряжения: для кривой -из точки 5 в точку 0; для кривой -из точки 6 в точку 7. Явление скачкообразного изменения тока при изменении входного напряжения называется триггерным эффектом в последовательной феррорезонансной цепи.

В соответствии с уравнением

(2)

на рис. 3 и 4 построены векторные диаграммы для двух произвольных значений тока ( ) в режимах до и после резонанса для обеих ВАХ (для -соответственно рис. 3,а и 3,б; для -рис. 4,а и 4,б); при этом соответствующие выбранным токам действующие значения напряжений, входящих в (2), взяты из графиков на рис. 2.


Анализ векторных диаграмм позволяет сделать вывод, что в режиме до скачка тока напряжение на входе цепи опережает по фазе ток, а после скачка-отстает, т.е. в первом случае нагрузка носит индуктивный характер, а во втором-емкостной. Таким образом, скачок тока в феррорезонансной цепи сопровождается эффектом опрокидывания фазы.

Феррорезонанс в параллельной цепи рассмотрим на основе схемы на рис. 5. Для этого, как и в предыдущем случае, строим (см. рис. 6) прямую , определяемую выражением (1).


Далее, поскольку , в соответствии с соотношением строим результирующую ВАХ цепи.

Точка пересечения кривой с прямой соответствует феррорезонансу токов. Необходимо отметить, что в реальном случае действительная ВАХ цепи в отличие от теоретической не касается оси ординат, что объясняется наличием высших гармоник тока и неидеальностью катушки индуктивности.

Из построенной ВАХ видно, что при увеличении тока источника имеет место скачок напряжения. Явление скачкообразного изменения напряжения при изменении входного тока называется триггерным эффектом в параллельной феррорезонансной цепи.



На рис. 7 для двух (до и после резонанса) значений напряжения ( и ) построены векторные диаграммы; при этом соответствующие выбранным напряжениям действующие значения токов и взяты из графиков на рис. 6.


Анализ векторных диаграмм показывает, что в режиме до скачка напряжения ток источника опережает по фазе входное напряжение (рис. 7,а), а после скачка (рис. 7,б) -отстает, т.е. в первом случае нагрузка носит емкостной характер, а во втором-индуктивный. Таким образом, скачок напряжения связан с эффектом опрокидывания фазы.


Аналитические методы расчета

Аналитические методы, в отличие от рассмотренных выше графических, позволяют проводить анализ нелинейной цепи в общем виде, а не для частных значений параметров элементов схемы. В этом заключается их главное преимущество. Однако аппроксимация нелинейной характеристики, лежащая в основе данных методов, изначально обусловливает внесение в расчеты большей или меньшей погрешности. Как и при графическом анализе цепей, при применении аналитических методов используются характеристики нелинейных элементов для мгновенных значений, по первым гармоникам и для действующих значений. При этом для расчета цепей переменного тока наиболее широкое распространение получили следующие аналитические методы:

-метод аналитической аппроксимации;

-метод кусочно-линейной аппроксимации;

-метод гармонического баланса;

-метод эквивалентных синусоид (метод расчета по действующим значениям).

В первых трех случаях обычно используются характеристики нелинейных элементов для мгновенных значений. Характеристики нелинейных элементов по первым гармоникам используются при применении частного варианта метода гармонического баланса - метода расчета по первым гармоникам. В свою очередь, метод эквивалентных синусоид основан на применении характеристик нелинейных элементов для действующих значений.

 

Метод аналитической аппроксимации

Данный метод основан на аппроксимации характеристик нелинейных элементов аналитическими выражениями с последующим аналитическим решением системы нелинейных уравнений состояния цепи. Точность, а с другой стороны, сложность расчета методом аналитической аппроксимации непосредственно зависят от вида принятой аналитической функции, аппроксимирующей характеристику нелинейного элемента. Поэтому ее выбор является важнейшим этапом при анализе цепи данным методом. Как уже отмечалось, для получения большей точности расчета необходимо выбирать аппроксимирующую функцию, наиболее полно соответствующую исходной нелинейной характеристике, что, однако, может привести в общем случае к появлению в уравнениях состояния сложных математических выражений, часто трудно разрешимых (или вообще неразрешимых) аналитически. С другой стороны, принятие чрезмерно простой функции для аппроксимации позволяет достаточно быстро получить результат, однако погрешность расчета может оказаться недопустимо высокой. Таким образом, выбор аппроксимирующей функции во многом зависит от поставленной задачи расчета и требуемой точности его результатов.

Пусть, например, в цепи состоящей из последовательно соединенных источника тока с и нелинейной катушки индуктивности, заданная графически вебер-амперная характеристика которой может быть аппроксимирована выражением

, (3)

требуется найти напряжение на индуктивном элементе.

На первом этапе определяем коэффициенты и аппроксимирующей функции с учетом того, что рабочий участок заданной графически кривой ограничен сверху амплитудой А тока в цепи, что сразу дает одну из двух точек аппроксимации.

После этого подставляем в (3) выражение , в результате чего получаем

или, с учетом соотношения

.

Тогда искомое напряжение на катушке индуктивности

.

 


<== предыдущая страница | следующая страница ==>
Графический метод с использованием характеристик по первым гармоникам | Цепи с распределенными параметрами

Дата добавления: 2014-03-11; просмотров: 485; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.01 сек.