Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Непрямой остеогистогенез

Читайте также:
  1. C. Сердечная реанимация - непрямой массаж сердца
  2. Алгоритм внутривенной непрямой трансфузии эритроцитной массы
  3. Непрямой массаж сердца
  4. Тройной непрямой метод

Развитие кости путем непрямого гистогенеза происходит в 4 стадии:

1.Формирование хрящевой модели.

2.Перихондриальные окостенения.

3.Энхондральные окостенения.

4.Эпифизарные окостенения.

Формирование хрящевой модели – проис­ходит на втором месяце эмбрионального развития. В местах будущих трубчатых костей из мезенхимы закладывается хрящевой зачаток, который очень быстро принимает форму будущей кости. Зачаток состоит из эмбрионального гиалинового хряща, покрытого надхрящницей. Некоторое время он растет, как за счет клеток, образующихся со стороны надхрящницы, так и за счет размножения клеток во внутренних участках.

Перихондральное окостенение - процесс остеогистогенеза начинается в области диафиза, при этом скелетогенные клетки надхрящницы дифференцируются в сторону остеобластов, которые между надхрящницей и хрящом, т.е. перихондральные, образуют ретикулофиброзную костную ткань, которая затем перестраивается в пластинчатую. В связи с тем, что эта кость в виде ажурной манжетки окружает диафиз хряща- ее называют перихондральной.

Образование костной манжетки нарушает питание хряща, что приводит к дистрофическим изменениям в центре хрящевого зачатка. Хондроциты вакуолизируются, их ядра пикнотезируются, и образуются так называемые пузырчатые хондроциты. Хрящ в этом месте перестает расти. Неизмененные дистальные отделы диафиза продолжают свой рост, при этом хондроциты на границе эпифиза и диафиза собираются в колонки, направление которых совпадает с длинной осью будущей кости.

Следует подчеркнуть, что в колонке хондроцитов происходит два противоположно направленных процесса:

1) размножение и рост в дистальных отделах диафиза;

2) дистрофические процессы в проксимальном отделе;

Параллельно с этим между набухшими клетками происходит отложение минеральных солей, что обуславливает появление резкой базофилии и хрупкости хряща. С момента разрастания сосудистой сети и появления остеобластов надхрящница перестраивается и превращается в надкостницу. Кровеносные сосуды и окружающая их мезенхима, остеогенные клетки и остеокласты врастают через отверстия костной манжетки и входят в соприкосновение с обызвествленным хрящом. Остеокласты выделяют гидролитические ферменты, осуществляющие хондролиз обызвествленного межклеточного вещества. В следствие чего диафизарный хрящ разрушается и в нем возникают пространства, в которых поселяются остеоциты, образующие на поверхности оставшихся участков обызвествленного хряща костную ткань.

Энхондральное окостенение - процесс образования кости внутри хрящевого зачатка (диафизарный центр окостенения).

В следствие разрушения энхондральной кости остеокластами образуются большие полости и пространства (полости резорбции) и наконец возникает костномозговая полость. Из проникшей мезенхимы образуется строма костного мозга, в которой поселяются стволовые клетки крови и соединительной ткани Параллельно с этим со стороны надкостницы нарастают все новые и новые перекладины костной ткани. Разрастаясь в длину по направлению к эпифизам, и увеличиваясь в толщину они образуют плотный слой кости. Вокруг сосудов формируются концентрические костные пластинки, происходит закладка первичных остеонов.

Эпифизарное окостенение - процесс появления центров окостенения в эпифизах. Этому вначале предшествует дифференцировка хондроцитов, их гипертрофия, сменяемая ухудшением питания, дистрофией и кальцинацией. В дальнейшем происходит процесс окостенения.

Следует отметить, что между эпифизарным и диафизарным центрами окостенения формируются метаэпифизарная пластинка, состоящая из 3 зон:

а) зона неизмененного хряща;

б) зона столбчатого хряща;

в) зона пузырьковых клеток;

При соединении эпифизарных и диафизарных центров окостенения рост кости в длину останавливается. У людей это примерно в 20-25 лет.

Клетки костной ткани

Костная ткань содержит три типа клеток:

а) остеоциты; б) остеобласты; в) остеокласты;

Остеоциты это преобладающие, дефинитивные клетки костной ткани, утратившие способность к делению.

Форма - отросчатая, вытянутая, размеры 15 на 45 мкм.

Ядро - компактное, относительно круглое.

Цитоплазма - слабобазофильная, со слаборазвитыми органеллами.

Локализация - в костных полостях или лакунах. Длина полостей от 22 до 55 мкм, ширина от 6 до 14 мкм.

 

Остеобласты - молодые клетки, создающие костную ткань.

Форма - кубическая, пирамидальная, угловатая, размером около 15 - 20 мкм.

Ядро - округлой или овальной формы, расположено эксцентрично, содержит одно или несколько ядрышек.

Цитоплазма - содержит хорошо развитую агранулярную эндоплазматическую сеть, митохондрии, комплекс Гольджи, значительное количество РНК, высокую активность щелочной фосфатазы.

Остеокласты (остеокластоциты) клетки гемотогенной природы, способные разрушать обызвествленный хрящ и кость.

Форма - неправильная, округлая.

Размеры - диаметр до 90мкм.

Ядро - количество от 3 до нескольких десятков.

Цитоплазма - слабобазофильная, иногда оксифильная, содержит большое количество лизосом, митохондрий. На стороне прилегания остеокласта к разрушаемой поверхности различают две зоны:

а) гафрированная каемка;

б) зона плотного прилегания остеокласта к костной поверхности.

Гофрированная каемка - область абсорбции и секреции гидролитических ферментов.

Зона плотного прилегания остеокласта к костной поверхности, окружает, первую как бы герметизирует область действия ферментов. Эта зона цитоплазмы светлая, содержит мало органелл, за исключением микрофиламентов, состоящих из актина.

 

В периферическом слое цитоплазмы содержатся многочисленные мелкие пузырьки и более крупные вакуоли, много митохондрий, лизосом, гранулярная эндоплазматическая сеть развита слабо. Есть предположения, что остеокласты выделяют СО2, а фермент карбоангидраза - синтезирует из него кислоту Н2СО3, которая разрушает органическую матрицу кости и растворяет кальциевые соли. В том месте, где остеокласт соприкасается с костным веществом, образуется лакуна.

Дифференциация остеокластов зависит от воздействия лимфокинов, которые вырабатываются Т-лимфоцитами.

Межклеточное вещество

Межклеточное вещество образовано основным веществом, импрегнированным неорганическими слоями и расположенными в нем пучками коллагеновых волокон.

Основное вещество содержит небольшие количества хондроитинсерной кислоты, много лимонной кислоты, которые образуют комплексы с кальцием, импрегнирующими органическую матрицу кости. Основное вещество кости содержит кристаллы гидроксиапатита упорядоченно расположенные по отношению к фибриллам органической матрицы, а также аммофный фосфат кальция. Костная ткань содержит более 30 микроэлементов (медь, стронций, цинк, барий, магний и другие).

Коллагеновые волокна образуют небольшие пучки. Волокна содержат белок коллаген I типа. В ретикулофиброзной костной ткани волокна имеют беспорядочное направление и строго ориентированны в пластинчатой костной ткани.

Строение трубчатых костей

Трубчатая кость построена в основном из пластинчатой костной ткани, исключение составляют только бугорки.

В трубчатой кости различают центральную часть - диафиз и периферическое окончание ее - эпифиз.

Диафиз кости образован тремя слоями:

1) надкостницей (периост);

2) собственно костным остеонным слоем;

3) эндостом (внутренний слой);

*Надкостница состоит из поверхностного волокнистого слоя, образованного пучками коллагеновых волокон, и глубокого остеогенного слоя, состоящего из остеобластов и остеокластов. За счет надкостницы, которая пронизана сосудами , осуществляется питание костной ткани. Остеогенный слой обеспечивает рост кости в толщину, физиологическую и репаративную регенерацию.

*Собственно кость (остеонный слой) отделен от надкостницы слоем наружных генеральных пластинок, а от эндоста, слоем внутренних генеральных пластинок.

Наружные генеральные пластинки не образуют полных колец вокруг диафиза кости, перекрываются на поверхности следующими слоями пластинок. Наружные генеральные пластинки имеют прободающие каналы, по которым из надкостницы внутрь кости входят сосуды, кроме этого со стороны надкостницы в кость под разными углами проникают коллагеновые волокна (прободающие волокна).

Внутренние генеральные пластинки хорошо развиты только там,где компактное вещество кости непосредственно граничит с костномозговой полостью. В тех местах, где компактное вещество переходит в губчатое, его внутренние генеральные пластинки продолжаются в пластинки губчатого вещества.

Остеонный слой. В этом слое костные пластинки располагаются в остеонах, формируя остеонные пластинки и вставочные пластинки, последние локализуются между остеонами.

*Остеон основная структурная единица компактного вещества трубчатой кости. Каждый остеон представляет собой костную трубку диаметром от 20 до 300 мкм, в центральном канале которой располагается питающий сосуд и локализованы остеобласты и остеокласты. Вокруг центрального канала концентрически располагаются от 5 до 20 костных пластинок, коллагеновые волокна в костных пластинках каждого слоя имеют строго параллельное направление. Направление коллагеновых волокон в соседних пластинках не совпадает, и поэтому они располагаются под углом друг к другу, что способствует укреплению остеона, как структурного элемента кости. Между костными пластинками в костных лакунах располагаются тела остеоцитов, которые анастамозируют между собой своими отростками расположенные в костных канальцах.

 

*Остеонный слой представляет собой систему параллельных цилиндров (остеонов), промежутки между которыми заполнены вставочными костными пластинками.

*Эндостом - тонковолокнистая соединительная ткань, которая выстилает кость со стороны костномозгового канала. Волокнистая соединительная ткань содержит остеобласты и остеокласты.

*Эпифиз кости - образован губчатой костной тканью. Снаружи покрыт надкостницей, под которой располагается слой генеральных пластинок и слой остеонов. В толще эпифиза костные пластинки формируют систему трабекул, которые располагаются друг к другу под углом. Полости между трабекулами заполнены ретикулярной тканью и гемопоэтическими клетками.

Рост трубчатых костей.

Рост трубчатых костей в длину обеспечивается наличием метаэпифизарной хрящевой пластинки роста, в которой появляются 2 противоположных гистогенетических процесса:

1) разрушение эпифизарной пластинки;

2) непрестанное пополнение хрящевой ткани путем новообразования клеток.

В метаэпифизарной пластинке различают 3 зоны:

а) пограничная зона;

б) зона столбчатых клеток;

в) зона пузырчатых клеток;

*Пограничная зона - состоит из округлых и овальных клеток и единичных изогенных групп, некоторые обеспечивают связь хрящевой пластинки с костью эпифиза. Между костью и хрящем находятся кровеносные капилляры.

*Зона столбчатых клеток - состоит из активно размножающихся клеток, которые формируют колонки, расположенные по оси кости.

*Зона пузырчатых клеток - характеризуется гидратацией и разрушением хондроцитов с последующим энхондральным окостенением. Дистальный отдел этой зоны граничит с диафизом, откуда в нее проникают остеогенные клетки и кровеносные капилляры. Продольно расположенные колонки клеток являются по существу костными трубочками, на месте которых формируются остеоны.

Когда центры окостенения в диафизе и эпифизе сливаются, рост в длину прекращается. У человека это происходит в 20-25 лет.

Рост трубчатой кости в толщину осуществляется за счет пролиферации клеток глубокого остеогенного слоя надкостницы.

Ретикулофиброзная костная ткань

Этот вид костной ткани характерен в основном для зародышей. У взрослых встречается на месте заросших черепных швов, в местах прикрепления сухожилий к костям.

Коллагеновые волокна имеют беспорядочное направление и образуют толстые пучки.

Основное вещество содержит удлиненно-овальной формы костные полости (лакуны) с длинными анастомозирующими канальцами, в которых лежат костные клетки - остеоциты с их отростками.

Снаружи грубоволокнистая кость покрыта надкостницей.

Пластинчатая костная ткань

Эта ткань состоит из костных пластинок, образованных костными клетками и минерализированным аморфным веществом с коллагеновыми волокнами. В разных костных пластинках направление коллагенивых волокон различно.

Благодаря этому достигается большая прочность пластинчатой кости.

 

 

МЫШЕЧНЫЕТКАНИ

Мышечные ткани (teхtus muscularis) - это ткани специального назначения, структурные элементы которых способны к сокращению, сопровождающемуся изменением мембранного потенциала. А само изменение формы сократительных элементов обусловлено взаимодействием белков актина и миозина при участии ионов кальция и других белков.

Источники развития

Мышечные ткани развиваются из пяти различных источников и в связи с этим подразделяются на пять гистогенетических типов:

1) соматический тип - происходит из миотомов мезодермы (скелетная мышечная ткань )

2) целомический тип - происходит из вентральной мезодермы (сердечная мышечная ткань )

3) висцеральный тип - происходит из мезенхимы (гладкая мышечная ткань внутренних органов)

4) нейральный тип - происходит из нервной трубки (гладкие миоциты мышц радужки)

5)эпидермальный тип - происходит из кожной эктодермы (миоэпителиальные корзинчатые клетки потовых, молочных, слюнных и слезных желез)

Морфофункциональная классификация

1. Гладкие (неисчерченные ) мышечные ткани, в которых нити актина и миозина формируют сократительные миофибриллы, не имеющие поперечной исчерченности.

2.Поперечнополосатые (исчерченные) мышечные ткани, в которых взаимное расположение актиновых и миозиновых протофибрилл создает поперечную исчерченность.

ГЛАДКИЕ МЫШЕЧНЫЕ ТКАНИ

Гладкие мышечные ткани мезенхимного происхождения

Гистогенез. Стволовые клетки этой ткани и клетки предшественники, по-видимому, родственны предшественникам фибробластов соединительной ткани и располагаются, будучи уже детерминированными в составе мезенхимы. Подобно фибробластам они синтезируют гликозаминогликаны и молекулы коллагена, из которых уже вне клетки осуществляется сборка матрикса базальной мембраны и волокон.

Локализация - стенка полых внутренних органов (пищеварительный тракт, воздухоносные пути, мочевыводящие пути, половые пути, сосуды), в капсулах селезенки и лимфатических узлов.

Строение - клеточное. Структурной единицей является гладкий миоцит.

Форма гладкого миоцита. Это веретенообразная клетка длиной от 20 до 500 мкм, диаметром от 5 до 8 мкм. В матке, эндокарде, аорте, мочевом пузыре встречаются миоциты с отростками. При сокращении миоцит может изгибаться и даже закручиваться.

Цитолемма гладкого миоцита образует многочисленные впячивания - пиноцитозные пузырьки и кавеолы, посредством которых в цитоплазму поступают ионы кальция. Цитоплазма окрашивается оксифильно. Органеллы общего назначения располагаются возле полюсов ядра. Комплекс Гольджи и эндоплазматическая сеть, особенно гранулярная, развиты слабо, что свидетельствует о пониженных синтетических процессах, имеются свободные рибосомы, включения жира, углеводов и пигментные включения.

Актиновые миофиламенты в цитоплазме располагаются продольно или под углом к длинной оси клетки, образуя трехмерную сеть. Места прикрепления их к цитоплазме, либо друг к другу, под электронным микроскопом имеют вид плотных телец. Эти тельца состоят из белка a- актинина. В плотных тельцах, которые прикрепляются к цитоплазме, обнаружен винкулин. Актиновых миофиламентов больше. В их состав кроме актина входят белки - тропомиозин, кальдесмон и кальпонин.

Миозиновые миофиламенты располагаются в цитоплазме миоцита продольно, они толще актиновых. При сокращении наблюдается перераспределение актиновых и миозиновых нитей относительно друг друга. В механизме сокращения гладких миоцитов большую роль играет процесс фосфорилирования миозина, который зависит от концентрации ионов кальция. Регуляцию концентрации ионов кальция осуществляет специальный белок кальмодулин. Это белок в комплексе с кальцием (ионом) активирует фермент, который фосфорилирует миозин. В фосфорилированном состоянии миозин способен к взаимодействию с актином.

Благодаря межмолекулярным взаимодействиям с миозином параллельные актиновые нити смещаются навстречу друг к другу, энергия тяги передается на цитолемму и конфигурация клетки изменяется.

Каждый миоцит окружен базальной мембраной, в которой имеются отверстия, в области отверстий между соседними миоцитами образуются щелевидные соединения - нексусы. Вокруг мышечных клеток ретикулярные, эластические и тонкие коллагеновые волокна образуют сетку - эндомизий, который объединяет соседние миоциты. Мышечные группы из 10-12 миоцитов объединяются в мышечные пласт, между которыми располагается рыхлая соединительная ткань с кровеносными сосудами и нервами.

Гладкая мышечная ткань эпидермального происхождения.

Миоэпителиальные клетки этой ткани развиваются из кожной эктодермы.

Локализация - в потовых, молочных, слюнных и слезных железах. Дифференцируясь одновременно с их секреторными, эпителиальными клетками из общих предшественников, миоэпителиальные клетки непосредственно прилегают к эпителиальным таким образом, что от соединительной ткани их отделяет тонкая общая базальная мембрана.

Форма - звездчатые или корзинчатые. Своими отростками они охватывают концевые отделы и мелкие выводные протоки желез. В отростках локализован сократительный аппарат, организованный таким же образом, как и в неисчерченных миоцитах мезенхимного происхождения.

Ядро и органеллы располагаются в центральной части клетки.

Функция. Сокращаясь, отростки способствуют выведению секрета желез.

Регенерация. В ходе регенерации миоэпителиальные и секреторные клетки развиваются из общих малодифференцированных клеток эпидермальной природы.

Гладкая мышечная ткань нейрального происхождения

Миоциты этой ткани развиваются из клеток нейрального зачатка в составе стенки глазного бокала.

Строение - это неисчерченные миоциты с соответственно развитым сократительным аппаратом.

Локализация - входят в состав двух мышц, радужки глаза - расширяющий и суживающий зрачок.

Гладкие мышечные ткани в составе органов

В составе органов гладкие (неисчерченные) миоциты объединяются в пучки, между которыми располагаются тонкие прослойки рыхлой волокнистой соединительной ткани (перемизий). Совокупность пучков образует мышцу, которая окружена более толстыми прослойками волокнистой соединительной ткани (эпимизий). В прослойках проходят кровеносные сосуды, которые доставляют питание гладкой мышце, и нервные волокнам, оканчивающиеся между миоцитами.

Локализация - в стенках полых внутренних органов (органов дыхания, желудочно-кишечного тракта, половых органов, кровеносных сосудов).

Поперечнополосатые мышечные ткани

Сердечная поперечнополосатая мышечная ткань

Гистогенез. Источник развития этой ткани симметричные участки висцерального листка спланхнотома (целомической выстилки) в шейной части тела зародыша, называемые миоэпикардиальной пластинкой. Большинство ее клеток дифференцируются в сердечные миоциты (кардиомиоциты), остальные в клетки мезотелия эпикарда. В ходе гистогенеза дифференцируются несколько видов кардиомиоцитов: сократительные, проводящие, переходные (промежуточные) и секреторные.

Строение сократительных кардиоцитов

Форма - удлиненная, близкая к цилиндрической, размеры 100-150 мкм. Их концы соединяются друг с другом таким образом, что цепочки кардиомиоцитов составляют так называемые функциональные волокна толщиной 10-20 мкм, а области контактов образуют вставочные диски. Кардиомиоциты могут ветвиться и образовывать пространственную сеть.

Боковая поверхность покрыта базальной мембраной, в которую снаружи вплетаются тонкие ретикулярные и коллагеновые волокна.

Ядро (может быть 2) - овальной формы располагается в центральной части клетки. Ядра в большинстве случаев полиплоидны.

Цитоплазма содержит у полюсов ядер органеллы общего назначения, включая клеточный центр, комплекс Гольджи, слаборазвитую гранулярную эндоплазматическую сеть, отдельные лизосомы. Агранулярная эндоплазматическая сеть хорошо развита и формирует субсарколеммальные цистерны, прилежащие к Т-системам, а также анастомозирующие между собой трубочки L-систем. Кроме этого в цитоплазме содержатся включения гликогена и липидов, включения миоглобина распределены равномерно. Имеется большое количество митохондрий, которые образуют цепочки вокруг специальных органелл - миофибрилл.

Строение миофибрилл.

Миофибриллы состоят из упорядоченно расположенных нитей актина и миозина, представляющих собой сократительные белки. Для закрепления нитей актина и миозина служат особые структуры телофрагмы и мезофрагмы.

ЁТелофрагма - это сеть белковых молекул,которые растянуты поперек клетки и прикреплены к цитолемме. На продольном срезе кардиомиоцита телофрагмы имеют вид линий толщиной около 100 нм, получившх название Z-линий. Участок миофибриллы, который располагается между двумя телофрагмами, носит название саркомера.

ЁПо середине саркомера располагается мезофрагма, представленная на продольном срезе в виде линии (М-линия). От мезофрагмы в направлении телофрагмы отходят нити миозина, а от телофрагмы навстречу им нити актина. Они встречаются и на некотором расстоянии идут параллельно, причем каждый миозиновый (толстый) филамент сопровождается 6-ю актиновыми (тонкими) миофиламентами,

Участок сакромера, занятый М-линией и прилежащими зонами, в которых располагаются только миозиновые нити, носит название Н-полосы (светлой зоны), а участок, в котором располагаются нити миозина и частично актина - А-полосы ( А-диска).

Участки двух соседних саркомеров, разделенные Z- линией, содержащие только нити актина, вместе образуют I-полосу (I-диск). Полосы называются так потому, что из-за различной молекулярной организации в области I-полосы преломление света изотропное, а в области А-полосы анизотропное.

Между миофибриллами локализованы митохондрии и агранулярная эндоплазматическая сеть. Митохондрии очень крупные, и образуют трехмерную сеть с очень плотным их расположением в области I-диска.

На уровне телофрагмы, цитолемма образует глубокие куполообразные впячивания, которые называются поперечными трубочками или Т-трубочками, в которые заходит и базальная мембрана. Эта система обеспечивает быстрое проведение потенциала действия к каждой миофибрилле, обеспечивая синхронность их сокращения. Канальцы агранулярной эндоплазматической сети в цитоплазме расположены между миофибриллами продольно и анастомозируют друг с другом, достигая Т-трубочек идут на некотором расстоянии параллельно с ними.

Разные концы кардиомиоцитов в области вставочных дисков оканчиваются на разных уровнях. Выступающая часть одного кардиомиоцита вдвинута в углубленную часть последующего. Поверхность контакта клеток образует пальцевидные соединения - интердигитации, и многочисленные десмосомы. В них вплетаются актиновые нити ближайшего саркомера миофибриллы. Боковые поверхности выступов тоже соприкасаются и объединяются многочисленными нексусами. При помощи интердигитаций и десмосом кардиомиоциты прочно связываются друг с другом, что обеспечивает развитие единого усилия при сокращении многих соседних клеток. При помощи нексусов осуществляются ионные и химические взаимодействия, что способствует синхронизации сокращения кардиомиоцитов.

Строение проводящих кардиомиоцитов.

Размеры - значительно крупнее рабочих (длина около 100мкм, толщина около 50мкм).

Цитоплазма содержит все органеллы общего назначения. Митохондрии мелкие и равномерно распределены в цитоплазме.

Миофибриллы немногочисленные и располагаются по периферии клетки.

Цитолемма не образует Т-систем. Проводящие кардиомиоциты соединяются в волокна не только концами, но и боковыми поверхностями. Между кардиомиоцитами формируются вставочные диски, но они более просто устроены, чем между сократительными. Интердигитации и десмосомы встречаются очень редко

Функции состоят в том, что они воспринимают управляющие сигналы от пейсмекерных элементов и передают информацию к сократительным кардиомиоцитам. Волокна, состоящие из проводящих кардиомиоцитов, ветвятся между рабочими сократительными кардиомиоцитами, доставляя им возбуждающий имульс.

Регенерация сердечной мышечной ткани невозможна вследствие того, что она не сохраняет ни стволовых клеток, ни клеток - предшественников.

Молекулярные механизмы сокращения мышечного волокна.

При расслабленом состоянии миоцита в канальцах его агранулярной эндоплазматической сети аккумулируются ионы кальция. Потенциал действия, распостраняясь по цитолемме и Т-трубочкам, способствует высвобождению ионов кальция, которые поступают к миофибриллам и взаимодействуют с регуляторными белками - тропонином и тропомиозином. Вследствие этого молекулы тропомиозина сдвигаются и открывают участки актина, который получает возможность взаимодействовать с миозином и перемещаться друг на встречу другу.В результате такого встречного движения нити актина и миозина телофрагмы сближаются, а так как они прикреплены к цитолемме происходит укорачивание всего миоцита.

Энергия, необходимая для сокращения мышц, используется в виде АТФ. Головки миозина способны связывать молекулы АТФ, а также имеют АТФ-азную активность (т.е. способны расщеплять АТФ). Комплекс актин - миозин - АТФ не стабильный, и очень быстро распадается на актин, миозин, АТФ. Вероятно, что боковые мостики отсоединяются в тот момент, когда головка миозина присоединяет молекулу АТФ. Этот цикл повторяется со скоростью 50-100 раз в секунду. После смерти синтез АТФ прекращается, отсоединения актина от миозина не происходит, и актомиозиновый комплекс стабилизируется на несколько часов. При этом филаменты фиксируются в соединенном положении. Этот процесс получил название трупного окоченения.

Скелетная поперечнополосатая мышечная ткань

Гистогенез - источником развития этой ткани являются клетки миотомов дорсальной мезодермы. Одни из них дифференцируются на месте, другие мигрируют из миотомов в мезенхиму. Они уже детерминированы в направлении развития элементов мышечной ткани, хотя внешне не отличаются от других клеток мезенхимы. Их дифференциация продолжается на местах закладки будущих мышц.

Дифференциация клеток предшественников сходна как в области самих миотомов, так и после миграции.

Дифференциация происходит в двух направлениях:

1)Клетки первого направления сливаются, образуя симпластические структуры мышечные трубочки (миотубы), которые в дальнейшем формируют дефенетивные образования миосимпласты;

2)Клетки второго направления остаются самостоятельными, дифференцируясь в миосателлитоциты;

Строение мышечного волокна

Основным структурным элементом скелетной мышечной ткани является мышечное волокно, которое образовано миосимпластом и миосателлитоцитами.

Форма мышечного волокна - представляет особый цилиндр с округленными, косыми или зубчатыми конусами, диаметр 9 - 150 мкм, длина соответствует длине мышци.

Сарколемма - образована базальной мембраной, в которую вплетены ретикулярные и тонкие коллагеновые волокна окружающей соединительной ткани. Сарколемма окружает мышечное волокно снаружи. Внутренним слоем сарколеммы является плазмолемма миосимпласта.

Миосимпласт - покрыт плазмолеммой, по которой распостраняется мембранный потенциал действия, переходящий на мембрану Т-трубочек.

Ядра локализованы под плазмолеммой, количество их в миосимпласте достигает нескольких десятков тысяч. Форма ядра вытянутая, содержат ядрышки, незначительное количество гетерохроматина.

Цитоплазма симпласта имеет специальное название - саркоплазма.

Саркоплазма содержит три группы организованых структур:

1) органеллы общего назначения;

2) органеллы специального назначения - миофибриллы;

3) включения - жировые, углеводные, пигментные.

ЁОрганеллы общего назначения расположены главным образом возле полюсов ядер, митохондрии большие, многочисленные, гранулярная эндоплазматическая сеть развита слабо, агранулярная хорошо и имеет название саркоплазматической сети. Эта сеть представляет собой систему компонентов различной формы - от трубочек до сплющенных цистерн, которые окружают миофибриллы. Комплекс этих компонентов образует подобие манжеты вокруг саркомера. Полость этой манжетки соединяется с полостями этого уровня соседних миофибрилл. Следовательно, на любом уровне волокна все саркомеры, которые принадлежат разным миофибриллам окружены единой системой манжетов саркоплазматической сети.

Строение манжеты. Она состоит из трех компонентов:

1) терминальных цистерн ;

2) саркотубул;

3) центральной части, в которой саркотубулы образуют многочисленные анастомозы;

Между двумя соседними терминальными цистернами располагается поперечная трубочка (Т-трубочка). Митохондрии образуют цепочки вокруг специальных органелл - миофибрилл. Здесь же имеются включения гликогена и липидов. Включения миоглобина распределены по цитоплазме равномерно.

ЁМиофибриллы располагаются вдоль мышечного волокна, их длина совпадает с длиной волокна. Толщина 1-2мкм.

Строение

В миофибрилле различают последовательно расположенные темные анизотропные полосы (диски А) и светлые изотропные (диски I).

Анизотропные диски окрашиваются более интенсивно, чем изотропные. В средине каждого изотропного диска имеется тонкая темная линия, которая называется телофрагмой или линией Z. В центре анизотропного диска имеется более светлый участок Н-зона или полоска Гензена, посредине которого располагается тонкая темная линия М или мезофрагма.

Структурной единицей миофибрилл является саркомер - это участок расположенный между двумя телофрагмами. Длина его составляет 2-3 нм.

Саркомер - элементарная сократительная единица поперечно-полосатых мышц. На участке саркомера под электронным микроскопом выявлены миофиламенты двух типов - тонкие и толстые.

~Тонкие расположенны в І-дисках и частично входят между толстыми а А-диски до зоны Н. Один конец тонких нитей закреплен к телофрагме, а второй свободный. У толстых оба конца свободные. Тонкие нити состоят из белка актина, тропомиозина и трополина. Имеют диаметр 5 нм и длину 1 мкм.

~Толстые расположенные только в А-дисках и состоят из белка миозина. Имеют диаметр 10-12нм и длину 1,5 мкм.

Количественное соотношение : на 1 мизиновое волокно приходится 2 актиновых.

Миосателлитоциты

Миосателлитоциты прилежат к поверхности симпласта, так что их цитолеммы соприкасаются. С одним симпластом связано значительное количество сателлитоцитов. Это одноядерные клетки, являющиеся камбиальным элементом скелетной мышечной ткани..

Ядро меньше, чем ядро миосимпласта и более округлое.

Цитоплазма содержит равномерно распределенные митохондрии и эндоплазматическую сеть. Комплекс Гольджи и клеточный центр расположены рядом с ядром. Специальные органеллы отсутствуют.

Типы мышечных волокон

На светооптическом уровне различают красные мышечные волокна (I тип), белые мышечные волокна (II тип) и переходные формы. Каждый из этих типов волокон имеет особенности ультраструктуры и метаболизма.

Особенности ультраструктуры проявляются в степени развития саркоплазматической сети, протяженностью контакта Т-трубочек с этой сетью, структуры телофрагм, группировкой актиновых и миозиновых волокон в миофибриллах, количеством митохондрий, различным содержанием включений, миоглобина, гликогена, липидов.

Особенности метаболизма проявляются различной активностью ферментов: аденозинтрифосфатазы, сукцинатдегидрогеназы.

Например: волокна I типа содержат аденозинтрифосфатазу медленого типа и имеют высокую активность сукцинатдегидрогеназы, высокое содержание миоглобина и гликогена. Волокна II типа содержат АТФ-азу быстрого типа, активность СДГ в них ниже, включений гликогена больше, миоглобина - меньше.

Мышца как орган

Мышечные волокна, объединяясь соединительной тканью образуют орган, который носит название мышцы.

Отдельные­ мышечные волокна разделены между собой тонкой прослойкой соединительной ткани, которая называется эндомизий. Ретикулярные и коллагеновые волокна эндомизия переплетаются с волокнами сарколеммы. На каждом мышечном волокне плазмолемма образует узкие глубокие впячивание, в которые проникают ретикулярные и коллагеновые волокна. Они пронизывают базальную мембрану и образуют петлю, которая крепится к плазмолемме в том месте, где изнутри с ней контактируют актиновые нити саркомеров. Выйдя за пределы базальной мембраны, ретикулярные волокна переплетаются с коллагеновыми, которые переходят в сухожилия.

Каждое мышечное волокно имеет свою иннервацию и окружено сетью гемокапилляров. Комплекс волокна с окружающими его элементами рыхлой соединительной ткани является структурно-функциональной единицей скелетной мышцы и называется мион.

Мышечные волокна разных типов в определенных сочетаниях объединены в пучки, между которыми располагаются более толстые прослойки рыхлой волокнистой соединительной ткани - перимизий. Он содержит также и эластические волокна. Соединительная ткань, которая окружает мышцу в целом, носит название эпимизия.

НЕРВНАЯ ТКАНЬ

 

Нервная ткань (textus nervosus) - третья из четырех основных тканей организма - осуществляет регуляцию деятельности тканей и органов, их взаимосвязь и связь с окружающей средой. Состоит из нейроцитов (нейронов) и нейроглии.

Гистогенез

Нервная ткань развивается из дорсального утолщения эктодермы - нервной пластинки. Нервная пластинка последовательно преобразуется в нервный желобок, а затем в нервную трубку. Нервная трубка отделяется от лежащей над ней эпидермальной эктодермы. Часть клеток нервной пластинки не входит ни в состав эпидермальной эктодермы, ни в состав нервной трубки и располагается между ними в виде рыхлого скопления клеток - нервного гребня или ганглиозной пластинки. Клетки гребня начинают мигрировать в латеральном и вентральном направлениях, образовывая ядра черепных нервов, нейроны спинномозговых и автономных узлов, леммоциты (нейроглия), пигментные клетки кожи.

Утолщения эктодермы по бокам головы (нейральные плакоды) дают начало образованию ганглиев V, VII, 1Х и Х пар черепных нервов, вследствие миграции клеток из нейральной плакоды.

На ранних стадиях эмбриогенеза нервная трубка представляет собой многорядный нейроэпителий, образованый вентрикулярными или нейроэпителиальными клетками.

Вентрикулярные клетки цилиндрической формы, их апикальные отростки, которые граничат с полостью нервной трубки, соединены щелевыми контактами. Базальные концы соприкасаются с субпиальной пограничной мембраной. Для этих клеток характерно циклическое перемещение ядер: ядра премитотических клеток лежат глубоко, во время профазы приближаются к поверхности, кариокинез совершается вблизи желудочковой поверхности, а ядра дочерних клеток опять уходят в глубь. В процессе эмбрионального развития происходит снижение пролиферативной активности вентрикулярных клеток, а после рождения она вообще не наблюдается.

Сходные морфологически вентрикулярные клетки дифференцируются в различные типы клеток зрелой нервной ткани. Часть их дает начало нейроцитам, другая часть глиальным клеткам (эпендимоцитам, астроцитам и олигодендроглиоцитам). В тех отделах мозга, где гистогенез совершается особенно интенсивно, вентрикулярные клетки теряют цилиндрическую форму и способность к перемещению ядер, но сохраняют высокую пролиферативную активность. Эти клетки называются субвентрикулярными и экстравентрикулярными нейрогерминативными (камбиальными) клетками. В дальнейшем они дают начало некоторым типам нейроцитов и глиальных клеток. Суб- и экстравентрикулярные клетки существуют еще некоторое время после рождения.

Нейроциты. Классификация. Строение.

Нейроцит (нейрон) - морфологическая и функциональная единица нервной ткани. По морфологическим особенностям и функциональному значению нейроциты различных отделов нервной системы значительно отличаются друг от друга.

В связи с изложенным, существует две классификации нейроцитов: а) морфологическая; б) функциональная;

Морфологическая классификация

Основным признаком, положенным в основу данной классификации, является количество отростков. По этому признаку нервные клетки делятся на:

1. Униполярные - имеют единственный отросток, который является аксоном.

2. Биполярные - имеют два отростка: аксон и дендрит.

3. Псевдоуниполярные - имеют один отросток, который на определенном расстоянии от тела делится на аксон и дендрит.

4. Мультиполярные - имеют много отростков, один из которых аксон, а все остальные дендриты.

В организме человека большинство нейроцитов мультиполярные, биполярные только в сетчатке глаза и в спиральном ганглии улитки, псевдоуниполярные - в спинномозговых узлах. Униполярных клеток в теле человека не обнаружено. Униполярную форму имеют лишь нейробласты.

Функциональная классификация

В зависимости от функции нейроциты делятся на:

1. Рецепторные (чувствительные или афферентные);

2. Ассоциативные (вставочные);

3. Эфферентные (моторные, эффекторные).

Рецепторные - генерируют нервный импульс под влиянием различных воздействий внешней или внутренней среды организма.

Ассоциативные нервные клетки осуществляют различные связи между нейроцитами.

Эфферентные - передают возбуждение на ткани рабочих органов, побуждая их к действию.

Строение нейроцитов

ЁРазмеры нейроцитов широко варьируют, от 4-6 мкм в зернистом слое мозжечка до 130 мкм - гигантские пирамидные клетки коры (клетки Беца). Нейроциты состоят из тела (перикарион) и отростков.

ЁФорма - самая разнообразная, характерной чертой является наличие отростков, которые обеспечивают проведение нервного импульса по телу человека из одной его части в другую, и поэтому длина их колеблется в больших пределах - от нескольких микрометров до 1-1,5 м. Аксон - длинный отросток (до 1,5 м), дендриты - как правило, короче аксонов (особенно в пределах ЦНС), ветвятся.

ЁЯдро нейроцита - округлой формы, расположено как правило в центре, реже эксцентрично. Нейроциты имеют одно ядро, двуядерные и одноядерные встечаются очень редко. Исключение составляют нейроциты некоторых ганглиев вегетативной нервной системы, например, в предстательной железе и шейке матки, которые имеют до 15 ядер. Хроматин в ядрах нейроцитов диспергирован, имеется 1, а иногда 2-3 крупных ядрышка.

ЁЦитоплазма содержит три типа организованых структур:

1) органеллы специального назначения;

2) органеллы общего назначения,

3) включения - углеводы (гликоген), пигментные вещества (липофусцин, меланин), разнообразные секреты (в нейросекреторных клетках).

Органеллы специального назначения - это хроматофильная субстанция и нейрофибриллы.

Хроматофильная субстанция - при окрашивании нервной ткани анилиновыми красителями в цитоплазме выявляется в виде базофильных глыбок и зерен различных размеров. Локализована в перикарионах, дендритах нейронов и отсутствует в аксонах и их конусовидных основаниях (аксональный холмик). Эти глыбки имеют большое количество рибонуклеопротеидов. При электронно-микроскопических исследованиях установлено, что им соответствуют участки цитоплазмы, содержащие скопления уплощенных цистерн гранулярной эндоплазматической сети. Степень ориентации цистерн в нейроцитах различных типов неодинакова. Максимально упорядочено они располагаются в нейроцитах спинного мозга. В моторных клетках спинного мозга глыбки хроматофильной субстанции крупные, расположены вокруг ядра, в чувствительных нейроцитах спинальных ганглиев глыбки имеют вид мелкой пылевидной зернистости. Хроматофильная субстанция является показателем функционального состояния нейроцита.

В аксонах, которые не имеют органелл, синтезирующих белок, характерен постоянный ток цитоплазмы от перикариона к терминалям со скоростью 1-3 мм в сутки - это медленный ток, который осуществляет транспорт ферментов, необходимых для синтеза медиаторов в окончаниях аксонов. Кроме этого имеется быстрый ток (5-10 мм/час), который осуществляет транспорт компонентов необходимых для синаптической функции. Дендритный ток совершается со скоростью 3 мм/час и осуществляет транспорт фермента, например, ацетилхолинэстеразы, разрушающей нейромедиатор ацетилхолин. Ретроградный ток- осуществляет транспорт компонентов цитоплазмы из окончаний в тело клетки.

Нейрофибриллы выявляются при импрегнации нервной ткани серебром и имеют вид тонких нитей диаметром 0,3-0,5 мкм, образуют плотную сетку в перикарионе и ориентированы параллельно в составе дендритов и аксонов, включая их тончайшие концевые ветвления. С помощью электронной микроскопии установлено, что нейрофибриллам соответствуют пучки нейрофилламентов диаметром 6-10 нм и нейротубул диаметром 20-30 нм. Нейрофиламенты и нейротубулы относятся к цитоскелету нейроцита. Расположены в перикарионе и дендритах между хроматофильными глыбками и ориентированы параллельно в аксоне.

Органеллы общего назначения

Комплекс Гольджи при световой микроскопии виден как скопление различных по форме колечек, извитых нитей, зернышек. Ультроструктура его обычная.

Клеточный центр чаще расположен между ядром и дендритами, в нейробластах он находится со стороны аксона.

Митохондрии имеются в теле нейроцита и во всех отростках, особенно много их в цитоплазме концевых аппаратов отростков. В цитоплазме содержится также много рибосом, лизосом.

Секреторные нейроциты - специализированные преимущественно для синтеза и секреции биологически активных веществ нейроциты. Нейросекреты выполняют роль нейрорегуляторов, участвуя во взаимодействии нервной и гуморальной систем интеграции.

К секреторным нейронам относятся клетки нейросекреторных ядер гипоталамической области головного мозга. Они имеют ряд специфических морфологических признаков:

1) это крупные нейроциты;

2) хроматофильная субстанция преимущественно располагается по периферии тела клеток;

3) в цитоплазме нейроцитов и аксонов находятся разной величины гранулы нейросекрета, содержащие белок, а в некоторых случаях липиды и полисахариды. Нейросекрет выводится в кровь или мозговую жидкость;

4) содержат ядра неправильной формы, что является свидетельством их высокой функциональной активности.

Нейроглия. Основные виды.

Нейроглия представляет собой среду, окружающую нейроциты и выполняющую в нервной ткани опорную, разграничительную, трофическую и защитную функции. Избирательность обмена веществ между нервной тканью и кровью обеспечивается, помимо морфологических особенностей самих капилляров ( сплошная эндотелиальная выстилка, плотная базальная мембрана) также и тем, что отростки глиоцитов, прежде всего астроцитов, образуют на поверхности капилляров слой, отграничивающий нейроны от непосредственного соприкосновения с сосудистой стенкой. Таким образом, формируется гематоэнцефалический барьер.

Нейроглия состоит из клеток, которые делятся на два генетически различных вида:

1) Глиоциты (макроглия);

2) Глиальные макрофаги (микроглия).

Глиоциты

Глиоциты в свою очередь делятся на:

1) эпендимоциты; 2) астроциты; 3) олигодендроциты.

Эпендимоциты образуют плотный эпителиоподобный слой клеток, выстилающих спинномозговой канал и все желудочки мозга.

Эпендимоциты дифференцируются первыми из глиобластов нервной трубки, выполняя на этой стадии развития разграничительную и опорную функции. На внутренней поверхности нервной трубки вытянутые тела образуют слой эпителиоподобных клеток. На клетках, обращенных в полость канала нервной трубки, образуются реснички, количество которых на одной клетке может достигать до 40. Реснички способствуют, очевидно, движению цереброспинальной жидкости. От базальной части эпендимоцита отходят длинные отростки, которые разветвляясь пересекают всю нервную трубку и образуют поддерживающий ее аппарат. Эти отростки на внешней поверхности принимают участие в образовании поверхностной глиальной пограничной мембраны, которая отделяет вещество трубки от других тканей.

После рождеия эпендимоциты постепенно теряют реснички, сохраняются они только в некоторых частях центральной нервной системы (водопровод среднего мозга).

В области задней комиссуры головного мозга эпендимоциты выполняют секреторную функцию и образуют «субкомиссуральный орган», выделяющий секрет, который, как предполагают, принимает участие в регуляции водного обмена.

Эпендимоциты, которые покрывают сосудистые сплетения желудочков мозга имеют кубическую форму, у новорожденных на их поверхности располагаются реснички, которые позже редуцируются. Цитоплазма базального полюса образует многочисленные глубокие складки, содержит крупные митохондрии, включения жира, пигментов.

Астроциты - это небольшие клетки звездчатой формы, с многочисленными расходящимися во все стороны отростками.

Различают два типа астроцитов:

1) протоплазматические;

2) волокнистые (фиброзные).

Протоплазматические астроциты

ЁЛокализация - серое вещество мозга.

ЁРазмеры - 15-25 мкм, имеют короткие и толстые сильно разветвленные отростки.

ЁЯдро - крупное, овальное, светлое.

ЁЦитоплазма - содержит небольшое количество цистерн эндоплазматической сети, свободных рибосом и микротрубочек, богата митохондриями.

ЁФункция - разграничения и трофическая.

Волокнистые астроциты.

ЁЛокализация - белое вещество мозга.

ЁРазмеры - до 20 мкм, имеют 20-40 гладкоконтурированных, длинных, слабоветвящихся отростков, которые формируют глиальные волокна, образующие плотную сеть - поддерживающий аппарат мозга. Отростки астроцитов на кровеносных сосудах и на поверхности мозга своими концевыми расширениями формируют периваскулярные глиальные пограничные мембраны.

ЁЦитоплазма - при электронно-микроскопическом исследовании светлая, держит мало рибосом и элементы гранулярной эндоплазматической сети, заполнена многочисленными фибриллами диаметром 8-9 нм, которые в виде пучков выходят в отростки.

ЁЯдро - большое, светлое, ядерная оболочка иногда образует глубокие складки, а кариоплазма характеризуется равномерной электронной плотностью.

ЁФункция - опорная и изоляция нейронов от внешних влияний.

Олигодендроциты - самая многочисленная и полиморфная группа глиоцитов, ответственная за выработку миелина в ЦНС.

ЁЛокализация - они окружают тела нейронов в центральной и периферической нервной системе, находятся в составе оболочек нервных волокон и нервных окончаний.

ЁРазмеры клеток очень небольшие.

ЁФорма - разные отделы нервной системы характеризуются различной формой олигодендроцитов (овальная, угловатая). От тела клеток отходит несколько коротких и слаборазветвленных отростков.

ЁЦитоплазма - плотность ее близка к таковой нервных клеток, не содержит нейрофиламентов.

ЁФункция - выполняют трофическую функцию, участвуя в обмене веществ нервных клеток. Играют значительную роль в образовании оболочек вокруг отростков клеток при этом они называются нейролеммоцитами (шванновские клетки), участвуют в водно-солевом обмене, процессах дегенерации и регенерации.

Микроглия

Микроглия - это совокупность небольших клеток, с 2-3 отростками, которые на своей поверхности имеют короткие вторичные и третичные разветвления. Клетки способны к амебовидным движениям.

Ядра - вытянутой или треугольной формы, богатые хроматином.

При раздражении клеток микроглии их форма меняется, отростки втягиваются, клетки приобретают специфический характер, округляются. В таком виде они называются зернистыми шарами. В последнее время доказана способность микроглии принимать участие в синтезе белков - иммуноглобулинов (антител). Все это указывает на возможную принадлежность микроглиоцитов к макрофагической системе.

Нервные волокна. Классификация. Строение.

Нервные волокна представляют собой отростки нервных клеток, которые обычно покрыты оболочками.

В зависимости от строения оболочки они делятся на две основные группы:

1. Миелиновые. 2. Безмиелиновые.

Те и другие состоят из отростка нервной клетки, который располагается в центре волокна и поэтому носит название осевого цилиндра и оболочки, образованной клетками олигодендроглии, которые называются нейролеммоцитами (шванновские клетки).

Миелиновые нервные волокна

Это волокна, состоящие из осевого цилиндра, миелиновой оболочки, нейролеммы и базальной мембраны.

ЁДиаметр поперечного среза от 1 до 20 мкм.

ЁЛокализация - центральная нервная система, периферическая нервная система.

Осевой цилиндр - представляет собой отросток нервной клетки (аксон или дендрит). Осевой цилиндр состоит из нейроплазмы, покрытой мембраной - аксолеммой.

Нейроплазма - это цитоплазма нервной клетки, которая содержит продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме содержатся митохондрии, которых больше в непосредственной близости к перехватам и особенно их много в концевых аппаратах волокон.

Аксолемма - представляет продолжение клеточной оболочки нейроцита, которая обеспечивает проведение нервного импульса. Скорость проведения нервного импульса по толстому миелиновому волокну составляет от 5 до 120 м/с.

Миелиновая оболочка представляет трубку толщиной от 0,3 до 20 мкм, которая покрывает осевой цилиндр по всей длине. Отсутствует миелиновая оболочка в местах выхода отростка из перикариона, на участках терминальных разветвлений аксона и участках узловых перехватов. Перехваты соответствуют границе смежных нейролеммоцитов. Отрезок волокна, расположеный между смежными перехватами называется межузловым сегментом, а его оболочка представлена одной глиальной клеткой. Длина межузлового сегмента составляет от нескольких микрометров до нескольких миллиметров. Узловой перехват имеет размеры от 0,25 до 1мкм.

В связи с тем, что миелиновая оболочка содержит в своем составе липиды, при обработке волокна осмиевой кислотой она интенсивно окрашивается в темно-коричневый цвет. Все волокно в этом случае имеет вид однородного цилиндра, в котором на определенном расстоянии друг от друга расположены светлые линии - насечки миелина.

В процессе развития миелинового волокна осевой цилиндр, погружаясь в нейролеммоцит , прогибает его оболочку и образует глубокую складку. Эта двойная складка плазмолеммы нейтролеммоцита носит название мезоксона. Развиваясь, шванновская клетка медленно поворачивается вокруг осевого цилиндра, вследствие чего мезаксон многократно окутывает его. Под электронным микроскопом каждый завиток мезаксона виден как светлый слой, шириной около 8-12 нм, который соответствует липидным слоям двух листков плазмолеммы нейролеммоцита. По середине и по поверхности его видны тонкие темные линии, образованные молекулами белка. Насечки миелина соответствуют тем местам, где завитки мезаксона раздвинуты цитоплазмой шванновской клетки.

Оболочку одного нервного волокна образуют много нейролеммоцитов. Они контактируют между собой на участках узловых перехватов. Межузловой сегмент соответствует одной глиальной клетке.

На продольном разрезе вблизи перехвата видна область, в которой завитки мезаксона последовательно контактируют с осевым цилиндром. Места прикрепления самых глубоких завитков мезаксона наиболее удалены от перехвата, а все последующие закономерно расположены ближе к нему. Это объясняется тем, что в процессе роста осевого цилиндра и нейролеммоцитов происходит наслоение мезаксона, поэтому первые его слои короче последующих. Края двух смежных леммоцитов в области перехвата образуют кольцеобразные отростки, диаметром 50 нм, длина этих отростков различна.

Нейролемма - периферическая зона нервного волокна, содержащая оттесненную сюда цитоплазму нейролеммоцитов и их ядра.

Базальная мембрана - покрывает миелиновое волокно снаружи. Она связана с плотными тяжами коллагеновых фибрилл, которые ориентированы продольно и не прерываются в перехвате.

Безмиелиновые нервные волокна

Безмиелиновые нервные волокна находятся преимущественно в составе вегетативной нервной системы.

ЁДиаметр волокон от 1 до 4 мкм, они гораздо тоньше миелиновых.

Безмиелиновые волокна состоят из осевого цилиндра, нейролеммы и базальной мембраны.

Нейролемма состоит из нейролеммоцитов, которые плотно располагаясь образуют тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра.

Осевой цилиндр представлен отростком нервной клетки. Прогибая оболочку нейролеммоцитов, осевой цилиндр глубоко погружается в этот тяж, при этом нейролеммоцит одевает его как муфтой. Оболочки нейролеммоцитов плотно охватывают осевые цилиндры и, смыкаясь под ними, образуют глубокие складки.

Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр. Под световым микроскопом, в связи с тем, что оболочки нейролеммоцитов очень тонкие, мезаксон и границы клеток рассмотреть нельзя, поэтому нейролемма выявляется как однородный тяж цитоплазмы, одетый на осевой цилиндр.

Нервные волокна внутренних органов в тяже нейролеммоцитов имеют не один, а несколько осевых цилиндров (10-20). Эти безмиелиновые волокна получили название волокон кабельного типа.

Снаружи нервное волокно покрыто базальной мембраной.

Скорость передачи нервного импульса в безмиелиновом нервном волокне значительно ниже (1-2 м/с) чем в миелиновом (5-120 м/с). Это объясняется тем, что в безмиелиновом волокне волна деполяризации проходит последовательно, не прерываясь, каждую точку плазмолеммы, а в миелиновом деполяризация возникает только в области перехватов, т.о. являясь сальтаторной (прыжкоюбразной).

Регенерация нейроцитов и нервных волокон

Нейроциты являются постоянной (несменяемой) клеточной популяцией, для которой свойственна только внутриклеточная физиологическая регенерация, заключающаяся в непрерывной смене структурных белков цитоплазмы.

При повреждении отростков нейроцитов и периферических нервов они способны регенерировать. На начальном этапе наблюдается дегенерация. Суть этого процесса сводится к тому, что в первые сутки происходит резкая активация нейролеммоцитов периферического отрезка. В их цитоплазме увеличивается количество свободных рибосом и полисом, эндоплазматической сети, образуется значительное количество шарообразных слоистых структур различных размеров. Миелиновый слой как обособленная зона исчезает. В течение 3-4 суток нейролеммоциты значительно увеличиваются в объеме, происходит их интенсивное размножение. К исходу 2 недели миелин и частицы осевых цилиндров рассасываются. В процессе резорбции принимают участие как глиальные элементы, так и макрофаги соединительной ткани.

Осевые цилиндры центрального отрезка на своих концах образуют булавовидные расширения (так называемые колбы роста) при помощи которых врастают в лентовидно расположенные нейролеммоциты периферического участка нерва. Рост происходит со скоростью 1-4 мм в сутки. В области терминалей рост волокна замедляется. Миелинизация нервных волокон и восстановление терминальных структур происходит несколько позже.

Нервные окончания

Все нервные волокна без исключения имеют свой концевой аппарат, который носит название - нервные окончания.

Классификация нервных окончаний

В зависимости от функционального назначения нервные окончания подразделяются на три основные группы:

1. Эффекторные: 2. Рецепторные: 3. Концевые.

а) двигательные; (аффекторные или

б) секреторные. чувствительные).

Эффекторные нервные окончания

Двигательные нервные окончания - представляют собой концевые аппараты нейритов двигательных клеток соматической и вегетативной нервной системы. Нервный импульс при их помощи передается на ткани рабочих органов.

Двигательные окончания в поперечно-полосатых мышцах носят название - нервно-мышечные окончания. Это окончания нейритов клеток двигательных ядер передних рогов спинного мозга или моторных ядер головного мозга. Основными структурными компонентами его являются:

1) концевые разветвления осевого цилиндра нервного волокна;

2) специализированный участок мышечного волокна.

Возле мышечного волокна нервное миелиновое волокно теряет миелиновый слой, погружается в мышечное волокно, вовлекая за собой его плазмолемму. Плазмолеммы терминальных ветвей аксона и мышечного волокна разделены щелью шириной около 50 нм, которая имеет название синаптической щели. Мембрана мышечного волокна в области контакта тоже образует многочисленные складки, формирующие вторичные синаптические щели.

Концевые ветви нервного волокна в мионевральном синапсе содержат обилие митохондрий, значительное количество пресинаптических пузырьков, наполненных медиатором - ацетилхолином.

Мышечное волокно в месте контакта с нервным окончанием не имеет типичной поперечной исчерченности и характеризуется обилием митохондрий и скоплением круглых или овальных ядер. Саркоплазма в совокупности с митохондриями и ядрами образует постсинаптическую часть синапса.

В случае возбуждения, ацетилхолин поступает через пресинаптическую мембрану в синаптическую щель на холинорецепторы постсинаптической (мышечной) мембраны, приводя ее в состояние деполяризации (возбуждение).

Постсинаптическая мембрана двигательного нервного окончания содержит фермент ацетилхолинэстеразу, которая разрушает ацетилхолин, ограничивая срок его действия.

В гладкой мышечной ткани, двигательные нервные окончания устроены проще. Тонкие пучки аксонов или их терминали, следуя между мышечными клетками, образуют четкообразные расширения (варикозы), содержащие холинергические и адренергические пресинаптические пузырьки.

Секреторные нервные окончания - представляют концевые утолщения, или четковидные расширения волокна с синаптическими пузырьками, которые содержат в основном ацетилхолин.

 

Рецепторные нервные окончания.

Рецепторные нервные окончания локализованы по всему организму и воспринимают различные раздражения как из внешней среды, так и от внутренних органов.

~Экстерорецепторы воспринимают раздражение из окружающий среды.

~Интерорецепторы воспринимают раздражение от собственных органов или тканей организма.

Разновидностью интерорецепторов являются проприорецепторы - чувствительные нервные окончания в мышцах, сухожилиях, которые принимают участие в регуляции движений и положения тела в пространстве.

В зависимости от специфичности раздражителя, воспринимаемого данным видом рецептора все чувствительные окончания делятся на механорецепторы, барорецепторы, хеморецепторы, терморецепторы, ноцирецепторы и др.

По особенностям строения чувствительные окончания делятся на свободные нервные окончания, в составе которых имеются только конечные разветвления осевого цилиндра, и несвободные нервные окончания, в состав которых входят все компоненты нервного волокна (разветвление осевого цилиндра, клетки глии).

· Несвободные нервные окончания могут быть покрыты

соединительнотканной капсулой и тогда они носят название

инкапсулированных.

· Несвободные нервные окончания, которые не имеют соединительнотканной капсулы, называются неинкапсулированными.

Рецепторные нервные окончания в составе эпителиальной, соединительной и мышечной тканей имеют целый ряд особенностей.

В эпителиальной ткани локализованы свободные нервные окончания. При их формировании миелиновые нервные волокна, подойдя к эпителиальному пласту теряют миелин, а осевые цилиндры проникают в эпителий и распадаются в нем между клетками на тонкие терминальные ветви.

Функция свободных рецепторов, например, эпидермиса, связана с восприятием болевых и температурных раздражений. Свободные нервные окончания могут в виде корзинки охватывать волосяные фолликулы. Регистрируя перемещения в пространстве, отдельные волоски, играют роль механорецепторов.

Многослойный эпителий имеет окончания, в состав которых входят не только терминали отростков нервных клеток, но и специфически измененные эпителиальные клетки - осязательные эпителиоциты Меркеля (epitheliocytus tactus), которые специализируются на восприятии механических раздражителей. Эти клетки отличаются от других клеток эпителия светлой цитоплазмой, наличием осмиофильных гранул диаметром 65-180 нм и уплощенным темным ядром. К базальной части клетки в виде дисков прилегают чувствительные нервные окончания, образуя дисковидные концевые структуры (диски Меркеля).

Весьма разнообразны рецепторы в соединительной ткани и соответственно делятся на несвободные некапсулированные, инкапсулированные и нервно-сухожильные веретена.

Инкапсулированные рецепторы соединительной ткани при всем их разнообразии всегда состоят из разветвленного осевого цилиндра и глиальных клеток, которые снаружи покрыты соединительнотканной капсулой.

Среди инкапсулированных нервных окончаний в соединительной ткани в зависимости от строения различают пластинчатые тельца Фатер-Пачини, луковицевидные тельца Гольджи-Маццони, осязательные тельца Мейснера, конечные колбы Краузе.

ЁПластинчатые тельца Фатер-Пачини представляют собой образования овальной формы, размерами 0,5х2 мм. Вокруг разветвлений нервного окончания, которые потеряли миелиновую оболочку, располагается внутренняя колба, образованая видоизмененными нейролеммоцитами. Снаружи тельце покрыто слоистой капсулой, образованой наслоением коллагеновых волокон, которые формируют концентрические пластинки, между которыми локализованы фибробласты. Пластинки и фибробласты образуют наружную колбу.

Этих телец много в соединительной ткани всех внутренних органов и глубоких слоях дермы. Функцией их является восприятие давления.

ЁЛуковицевидные тельца Гольджи-Маццони меньше, чем тельца Фатер-Пачини, имеют более тонкую капсулу и относительно большую внутреннюю колбу. Встречаются в коже, серозных и слизистых оболочек и выполняют функцию барорецепции.

ЁОсязательные тельца Мейснера - это овальные образования с разразмерами 50-100 мкм. Они состоят из олнгодендроцитов, которые располагаются перпендикулярно к длинной оси тельца. Миелиновое нервное волокно, проникая в тельце, теряет миелин и разветвляется на несколько конечных ветвей, которые контактируют с поверхностью глиальных клеток. Соединительнотканная капсула образована премущественно коллагеновыми волокнами, очень тонкая. Локализованы в соединительной ткани кожи, в частности в сосочковом слое дермы. Эти тельца являются рецепторами тактильной чувствительности.

ЁКонцевые колбы Краузе. Миелиновое волокно входит в капсулу и теряет миелиновую оболочку, оканчиваясь колбовидным расширением или может ветвиться, образуя систему безмиелиновых нервных окончаний. Капсула очень тонкая. Локализованы эти колбы в соединительной ткани языка и наружных половых органов. Функция - механорецепция.

ЁНервно-сухожильные веретена (сухожильные органы Гольджи) о


<== предыдущая страница | следующая страница ==>
Костная ткань, общая характеристика | Нервно-мышечные веретена

Дата добавления: 2014-09-10; просмотров: 677; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.033 сек.