Главная страница Случайная лекция Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика Мы поможем в написании ваших работ! |
Производственные источники зажиганияМеханизм воспламенения горючих смесей и систем сложен. Условия теплового самовоспламенения возникают при образовании и нагревании горючей среды во всем объеме аппарата, а также при переработке и хранении горючих волокнистых, сыпучих, пористых и т.п. материалов, которые имеют склонность к самовозгоранию. При достаточно малой начальной температуре скорость реакции окисления в горючей смеси практически равна нулю. С ростом температуры происходит увеличение скорости реакции. Наконец, при некоторой температуре начинается быстрое возрастание и скорости реакции, и температуры. Этот процесс завершается пламенным горением - происходит так называемый тепловой взрыв. В процессах теплового самовоспламенения большую роль играет теплообмен с окружающей средой. На рис. 5.3 приведены зависимости скорости тепловыделения реакции окисления (кривая 1) и скорости теплоотвода (прямые 2, 3 и 4). При начальной температуре смеси Т0 теплоотвод (прямая 2) превышает тепловыделения, так как скорость реакции невелика. В этом случае в системе устанавливается равновесная температура Т1, которая может сохраняться длительное время. Если температуру смеси повысить до Тсв (отвод тепла в этом случае характеризуется прямой 3), произойдет самовоспламенение. Самовоспламенение происходит и при любой другой начальной температуре, если она больше Тсв. Иной механизм наблюдается при вынужденном поджигании, т.е. при быстром локальном нагреве относительно холодной (Тсв << Тсв) горючей смеси. В зоне такого нагрева возникает быстрая реакция горения, но за пределами зоны химическая реакция не протекает. Из зоны реакции происходит интенсивный отвод тепла к окружающей холодной взрывоопасной смеси. Образование устойчивого фронта пламени, которое будет существовать после удаления инициатора горения (источника зажигания), происходит при нагревании определенного (критического) объема горючей смеси до температуры, превышающей температуру ее самовоспламенения. Величина критического объема горючих паро- и газовоздушных смесей обычно составляет 0,5-1 мм3, а температура поджигания превышает 1300-1500 °С. Открытое пламя и высоконагретые продукты сгорания топлива используются для нагрева веществ до высоких температур и проведения химических реакций, для получения тепловой, электрической энергии, а также механической работы в различных аппаратах и установках (печах, реакторах, котлах, двигателях и т.д.), при электро- и газосварке, пайке. Открытое пламя возникает при сжигании отходов производства или аварийных выбросов на факельных установках. Высоконагретые продукты сгорания топлива (дымовые газы) используются в процессах тепловой сушки сельскохозяйственных продуктов и сырья, окрашенных изделий и древесины и в других процессах. Температура пламени достигает 1200-1400 °С, его энергия и длительность действия настолько велики, что пламя способно воспламенять любые горючие смеси, поджигать горючие жидкости и твердые горючие материалы, поддерживать горение трудногорючих веществ и материалов. Фрикционные искры (искры удара и трения) образуются в результате перехода механической энергии в тепловую при ударах подвижных стальных частей машин о неподвижные, при работе инструментом ударного действия, при переработке твердых кусковых материалов или волокнистых и пылевидных материалов с твердыми инородными включениями (камнями, кусками металла и пр.). При достаточно сильных ударах отрывающиеся частицы стали размером 0,1—0,5 мм нагреваются, окисляются кислородом воздуха и загораются. Несмотря на то, что температура искр достигает 1650 °С, они поджигают далеко не все горючие паро- и газовоздушные смеси. Экспериментально установлено, что водород, ацетилен, этилен, окись углерода и пары сероуглерода образуют горючие смеси с воздухом, которые воспламеняются искрами удара и трения. Искры, образовавшиеся при ударах и трении алюминия о ржавое железо, поджигают любые горючие смеси (например, в вентиляторах с колесом из алюминия и кожухом из нелегированной стали). Это объясняется образованием термита и сгоранием его при высокой (около 3500 °С) температуре. Фрикционные искры, попав на поверхности с отложениями горючих пылей или волокон, приводят к появлению очагов тления - более мощных источников зажигания, которые способны воспламенять даже пылевоздушные горючие смеси. Разряды статического электричества происходят при образовании высоких потенциалов в процессе электризации веществ и материалов. Статическая электризация возникает в потоке органических жидкостей при их удельной электрической проводимости менее 10-7 (Ом·м)-1, при разбрызгивании жидкостей, В струе пара или газа, при трении твердых разнородных тел и тому подобных процессах. Искровые разряды имеют весьма высокие температуры, поэтому их воспламеняющую способность оценивают энергией электростатического разряда, которая пропорциональна квадрату разности потенциалов. Разность потенциалов при движении химически чистых растворителей по трубам достигает 4000-5000 В, а для воспламенения, например, паров бензола достаточно искры, которая образуется при разности потенциалов 300 В. Искровые разряды, которые возникают при разности потенциалов около 5000 В, воспламеняют почти все горючие смеси газов, паров и пылей с воздухом. Сжатие газов в компрессорах производят с целью их транспортировки и хранения, для интенсификации технологических процессов. Работа, которая затрачивается на сжатие газа, приводит к росту температуры сжатого газа и компрессора. Конечная температура газа пропорциональна степени сжатия (отношению конечного давления к начальному): с ростом степени сжатия увеличивается конечная температура. Даже при регламентном режиме эксплуатации компрессоров температура сжимаемого газа повышается до 120-220 °С. При различных нарушениях режима происходит значительный рост температуры газа и компрессора. Это приводит к интенсивному испарению и термическому разложению смазочных масел, образованию нагаромасляных отложений в нагнетательных трубопроводах, взрывоопасных концентраций и их воспламенению. Самовозгорание веществ в процессах сушки, транспортировки, хранения, а также при остановке аппаратов на осмотр, чистку и ремонт происходит достаточно часто. К веществам, которые склонны к самовозгоранию, относятся каменный и древесный уголь, сажа, порошкообразные и губчатые металлы (алюминий, титан, магний, никель и др.), фрезерный торф, сено, силос, клеенка, волокнистые и пористые материалы, пропитанные растительными маслами и животными жирами, скипидаром, олифой, и целый ряд других продуктов и материалов. Самовозгорание представляет собой процесс низкотемпературного окисления материалов, который заканчивается тлением или пламенным горением. Условия теплового самовозгорания зависят от вида материала и его характеристик, от температуры и влажности окружающей среды, от удельной поверхности материала и интенсивности теплообмена с окружающей средой.
Дата добавления: 2014-09-29; просмотров: 366; Нарушение авторских прав Мы поможем в написании ваших работ! |