Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВНУТРЕННЕГО ТРЕНИЯ ЖИДКОСТИ

Читайте также:
  1. I. ОПРЕДЕЛЕНИЕ БИОТЕХНОЛОГИИ КАК НАУКИ И ЕЕ ПРЕДМЕТА ИЗУЧЕНИЯ.
  2. Алгоритм расчета коэффициента теплоотдачипо критериальным уравнениям
  3. Буферные жидкости
  4. Быстрое определение направлений
  5. Быстрое определение расстояний
  6. В ламинарном потоке сумма статического и динамического давления остается постоянной. Эта сумма соответствует статическому давлению в покоящейся жидкости.
  7. Введение в экспертные системы. Определение и структура
  8. Взаиморастворимые жидкости в любых соотношениях.
  9. Виды решений, принимаемых по результатам рассмотрения вопроса о допустимости доказательств.
  10. ВИДЫ ТРЕНИЯ ТВЕРДЫХ ТЕЛ СУХОЕ И ГРАНИЧНОЕ ТРЕНИЕ.

ЦЕЛЬ РАБОТЫ: изучение методов определения коэффициента вязкости жидкости и определение коэффициента вязкости жидкости.

 

1. Краткие теоретические сведения:

 

Жидкость также как и газ обладает свойством перемещаться из области большого давления в область меньшего давления. Такое перемещение называется течением жидкости. Различают два вида течения жидкости: лиминарное (слоистое) и тербулентное (вихревое). Ламинирным течением называют течение, при котором слои жидкости скользят друг по другу. Оно происходит при небольших скоростях движения в трубках с относительно гладкими стенками, без резких изменения площади сечения или направления, а также при отсутствии множественных разветвлений. Турбулентным называется такое течение, при котором слои жидкости перемешиваются. Оно возникает при резких сужениях сечения трубки, при значительной шероховатости поверхности стенок трубы, а также в местах множественного разветвления русла или трубы, по которой течет жидкость.

Течение жидкости при небольших скоростях носит ламинарный характер вследствие сил взаимного притяжения между молекулами жидкости, а также между молекулами жидкости и твердых тел, с которыми жидкость соприкасается в процессе течения.

Рис.1

Ламинарное течение жидкости можно изобразить в виде параллельно перемещающихся слоев, распределены так, как это показано на рисунке 1, где стрелки представляют векторы скорости движения жидкости. Наибольшая скорость наблюдаются в средней, прилегающей к оси части трубы; по мере приближения к стенкам скорость уменьшается, а слой, непосредственно, прилегающий к стенкам трубы, покоится. Таким образом, вся масса текущей жидкости разделена по слоям, движущихся с различными скоростями, между которыми действуют силы внутреннего трения, препятствующие перемещению одного слоя относительно другого. Величина силы внутреннего трения зависит от градиента скорости и площади соприкосновения слоев и выражается Формулой:

.

где F – сила внутреннего трения.

- коэффициент внутреннего трения (коэффициент вязкости),

- градиент скорости, т. е. отношение изменение скорости к расстоянию, на котором оно осуществляются, взятом в направлении наибольшего возрастания скорости;

ΔS – площадь сопротивления слоев.

Формула (1) представляет собой закон Ньютона для вязкости: сила внутреннего трения пропорциональна градиенту скорости, площади соприкосновения слоев и направлена против движения жидкости.

Коэффициент внутреннего трения является важной характеристикой жидкости. В зоотехнии и ветеринарии изучают вязкость молока, крови, меда, и т. п. как показатель состояния здоровья животного, качества продукции. Из формулы (1) следует физический смысл коэффициента внутреннего трения: коэффициент внутреннего трения численно равен силе внутреннего трения, действующей между слоями единичной площади при градиенте скорости, равному единице. Коэффициент внутреннего трения зависит от природы жидкости и ее температуры. С повышением температуры коэффициент внутреннего трения уменьшается, т. к. увеличивается среднее расстояние между молекулами, а значит, уменьшаются силы взаимного притяжения между ними.

В системе СИ коэффициент вязкости измеряется в Н*с/м2 = Па*с = кг/м*с, а в системе СГС в г/см*с. Последняя система единиц называется пуаз.

Изучая ламинарное течение жидкости, французский физик и физиолог Пуазейль в 1841 г установил закон, согласно которому средняя скорость ламинарного течения жидкости по трубе пропорциональна градиенту давления жидкости, квадрату радиуса трубы и обратно пропорциональна коэффициенту внутреннего трения жидкости:

.

где -скорость ламинарного течения жидкости;

-градиент давления;

r- радиус трубы;

ή-коэффициент внутреннего трения.

Знак минус в формуле (2) показывает, что скорость течения жидкости направлена противоположно градиенту давления.

Из закона Паузелия (2) можно получить формулу для определения объема жидкости, протекшей по трубе за некоторый промежуток времени t :

V=

 

где r-радиус трубы;

-длина трубы

t-время течения жидкости по трубе;

ή-коэффициент внутреннего трения;

разность давлений на концах трубы;

V-объем жидкости, протекшей по трубе завремя.

Формула (3) лежит в основе метода определения коэффициента внутреннего трения с помощью капиллярного вискозиметра.

 

ЗАДАНИЕ I: определение коэффициента внутреннего трения жидкости капиллярным вискозиметром.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ : капиллярный вискозиметр, исследуемая жидкость дистиллированная вода, термометр, резиновая груша.

 

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙУСТАНОВКИ.

Рис.2

Капиллярный вискозиметр представляет собой U-образную стеклянную трубку рис.2, широкое колено, которой имеет внизу шарообразное расширение А. Капиллярная часть вискозиметра К имеет в своей верхней части шарик Б, переходящий затем в широкую трубку В. Шарик Б имеет метки М и Н, которые ограничивают определенный объем исследуемой жидкости. С помощью пипетки через широкое колено заполняют вискозиметр исследуемой жидкостью так, чтобы заполнился шарик А. С помощью груши через трубку В всасывают воздух так, чтобы уровень жидкости в вискозиметре поднялся выше метки М. Затем груша снимается с трубки В и жидкость в вискозиметре начнет под действием собственного веса опускаться по капилляру К. Секундомером определяют время t, в течение которого столб жидкости опустится от метки М до метки Н, т. е. время в течение которого по капилляру К протекает жидкость объемом, равным объему шарика Б.

Так как жидкость течет по капилляру под действием собственного веса, то разность давлений на концах капилляра будет равна гидростатическому давлению:

где ρ -плотность жидкости,

g -ускорение силы тяжести,

h -высота столба жидкости.

Учитывая это, формулу (3) можно записать в виде :

Из формулы (4) видно, что для определения коэффициента внутреннего трения η надо знать время течения жидкости по капилляру, радиус и длину капилляра, плотность жидкости, высоту поднятия ее в капилляре, а также объем протекшей жидкости.

Чтобы не делать таких затруднительных измерений, применяют метод сравнения. Для этого вначале проделывают опыт с дистиллированной водой, а затем с исследуемой жидкостью.

Запишем формулу (4) для дистиллированной воды и исследуемой жидкости:

-для воды:

-для исследуемой жидкости:

где -плотность дистиллированной воды,

-плотность исследуемой жидкости,

-коэффициент внутреннего трения воды,

-коэффициент внутреннего трения жидкости,

t0 --время протекания через капилляр воды,

tx -время протекания через капилляр жидкости.

В формулах (5) и (6) левые части равны, следовательно, равны и правые части:

Тогда получим:

Формула (7) является расчетной для определения коэффициента внутреннего трения капиллярным вискозиметром.

Для поддержания постоянной температуры исследуемой жидкости во время эксперимента вискозиметр опускают в сосуд с водой С.

 

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:

 

1.Чистый вискозиметр ополосните дистиллированной водой, а затем налейте в него дистиллированную воду так, чтобы заполнился нижний шарик А. Погрузите вискозиметр в сосуд с водой.

2.Осторожно с помощью резиновой груши засосите воду в верхний шарик Б чуть выше метки М.

3.Уберите резиновую грушу и секундомером определите время t0, в течении которого мениск воды пройдет расстояние от метки М до метки Н.

4.опыт проделайте 3-5 раз и вычислите среднее значение времени течения воды tоср.

5.Вылейте воду из вискозиметра и ополосните его исследуемой жидкостью.

6.Залейте в вискозиметр исследуемую жидкость до того же уровня, что и воду.

7.Так же, как и для дистиллированной воды, определите время tx течения жидкости от метки М до метки Н.

8.Опыт повторите 3-5 раз и вычислите среднее значение времени течения жидкости t x ср.

9.Измерьте температуру воды в сосуде С.

10.Выпишете из таблиц значения плотности воды ρ0, плотности исследуемой жидкости ρx и коэффициента внутреннего трения воды , соответствующие температуре воды в сосуде С.

11.Вычислите коэффициент внутреннего трения жидкости по формуле (7), подставляя средние значения txср и t0ср.

12.Расчитайте абсолютные ошибки измерений времени .

13.Вычислите относительную ошибку измерений коэффициента внутреннего трения жидкости по формуле:

14.Вычислите абсолютную ошибку коэффициента внутреннего трения по формуле:

15.Данные измерений занесите в таблицу 1 и 2:

 

Таблица 1.

Постоянные величины

Температура жидкости t, oC Концентрация раствора С, % Плотность воды ρо,г/см3 Плотность жидкости ρх г/см3 Вязкость воды η0 пуаз
         

 

 

Таблица 2

Результаты измерений

 

№№ t0, с tx, с Δt0, с Δ tx, с ηx пуаз x,% Δηx,пуаз
1.              
2.        
3.        
Средн.              

 

16.Сделайте выводы.

 

ЗАДАНИЕ 2: Определение коэффициента внутреннего трения жидкости методом падающего шарика (метод Стокса).

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: цилиндр с исследуемой жидкостью, набор шариков, секундомер, термометр.

 

ОПИСАНИЕ ЭКСПРИМЕНТАЛЬОЙ УСТАНОВКИ.

Всякая реальная жидкость обладает вязкостью и поэтому тело, движущееся в жидкости, испытывает на себе силы сопротивления со стороны жидкости. Подчеркнем, что здесь играет роль не трение шарика о жидкость, а трение отдельных слоев жидкости друг о друга, так как при соприкосновении твердого тела с жидкостью, к поверхности тела тотчас же прилипают молекулы жидкости, образуя молекулярный слой жидкости, обволакивающий тело. Слой жидкости, непосредственно прилегающий к телу, будет двигаться со скоростью тела и увлекать за собой соседние слои жидкости, которые тоже начнут двигаться. Таким образом, при небольших скоростях движения тела в жидкости будет происходить ламинарное течение жидкости в направлении траектории движения тела.

Английский физик Стокс установил закон: для тела шарообразной формы, движущегося с небольшой скоростью в жидкости, сила сопротивления F пропорциональна коэффициенту внутреннего трения η, радиусу шара r и скорости движения шара ν:

В данной работе для определения коэффициента внутреннего трения жидкости используется стеклянный цилиндр с исследуемой жидкостью(рис.3).На стекле цилиндра нанесены две метки: метка начала отсчета времени падения шарика(1) и окончания(2).

Рассмотрим падение шарика вязкой покоящейся жидкости. На шарик действуют три силы: сила тяжести

сила сопротивления (сила Стокса)

= 6πrηυ

Выталкивающая сила (по закону Архимеда равна весу вытесненной шариком жидкости).

F1 = 4/3πr2 ρ0g

где ρ0 – плотность вещества,

r – его радиус.

g – ускорение силы тяжести,

η – коэффициент внутреннего трения жидкости,

υ – скорость падения шарика,

ρ1 – плотность жидкости,

Направления этих сил указаны на рисунке 3.

 

 

В процессе движения шарика силы ρ и F1 не изменятся, а сила сопротивления F будет увеличиваться по мере увеличения скорости движения шарика (вначале шарик движется ускоренно. Наступит такой момент, когда силы F1 и F уравновесят силу тяжести, и тогда шарик будет двигаться равномерно. Следовательно, при условии:

Р = F1+F

шарик падает с постоянной скоростью, которую можно определить, зная пройденный путь и время:

Учитывая (9, 10, 11), и равенство (12) можно записать в виде:

4/3 πr3ρg = 4/3 πr3ρ1g + 6πrηυ.

Отсюда после преобразования (учитывая формулу (13)) получим:

Заметим, что все наши рассуждения верны лишь в том случае, если шарик падает в безгранично простирающейся жидкости, что практически осуществить невозможно, так как жидкость всегда находится в сосуде, имеющем стенки. Однако, если размеры сосуда значительно превышают размеры шарика, то формулу (14) можно считать верной. В противном случае следует внести в формулу поправку, учитывающую радиус сосуда, в котором налита жидкость; для цилиндрического сосуда с учетом его радиуса расчетная формула примет вид:

Вопрос о том, какой формулой пользоваться, решается в зависимости от величины отношения r/R. Если оно меньше чем 0,05, то берут формулу (14), а если больше, то (15).

Порядок выполнения работы:

1. С помощью микрометра измерьте диаметр шарика и определите его радиус. Измерения проводите три раза и вычислите среднее значение.

2. Опустите шарик в цилиндр с исследуемой жидкостью и с помощью секундомера измерьте время, в течении которого шарик пройдет расстояние от одной метки на цилиндре до другой (см. рис.3). Время падения шарика определите три раза и вычислите среднее значение tср.

3. Линейкой измерьте пройденный шариком путь ℓ.

4. Выпишите из таблицы значения плотности шарика и плотность жидкости ρ0.

5. Измерьте диаметр цилиндра и вычислите его радиус R и оцените отношение r/R.

6. Вычислите коэффициент внутреннего трения по соответствующей формуле.

7. Рассчитайте ошибки измерений.

Примечания: относительную ошибку измерений коэффициента внутреннего трения вычисляется по формуле:

8.Данные измерений и вычислений занесите в таблицы 3 и 4.

 

Таблица 3

Постоянные величины

 

ρ, г/см3 ρ1, г/см3 R, см r, см r/R
         

 

 

Таблица 4

Результаты эксперимента

 

№№ r, см Δr, см t, с Δt, с ℓ, см Δℓ, см η, пуаз Еη, % Δη, поуз
1.                  
2.        
3.        
Сред.                  

 

 

9.Сделайте выводы.

 

 

ЗАДАНИЕ 3. Определение коэффициента внутреннего трения жидкости гемовискозиметром капиллярным ВК-4.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: гемовискозиметр капиллярный ВК - 4, исследуемая жидкость, дистиллированная вода, аммиак водный 25%, спирт.

Градуированные пипетки спаянные из трех отдельных капилляров, имеют цифровые отметки 0, ½, ¾, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, причем расстояние между отметками 1, 2....10 разделено на 10 равных частей. На подставке укреплен кран 3, соединенный с правой пипеткой при помощи резиновой трубки 4 и через стеклянный тройник 5 и резиновые трубки 6, 7, 8 с наконечником 9и левой пипеткой. Наконечник служит для отсасывания ртом воздуха из прибора и создания, таким образом, необходимого вакуума в пипетках. Кран служит для перекрытия пипетки, в которую набирается дистиллированная вода (см. рис. 4).

Рис.4


<== предыдущая страница | следующая страница ==>
Порядок выполнение работы | Подготовка прибора к работе

Дата добавления: 2014-09-29; просмотров: 621; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.007 сек.