Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Определить абсолютные значения электродных потенциалов невозможно. Их можно только сравнивать

Читайте также:
  1. Depositum miserabile. Некоторые случаи поклажи имеют настолько своеобразные черты, что должны быть выделены в качестве специальных разновидностей этого контракта.
  2. ERP и управление возможностями бизнеса
  3. Non corpus solum aestimatur, sed potius quanti interfuit (D. 9.2.21.2). -Оценивается не столько врожденная вещь, сколько интерес.
  4. PR управление кризисом и возможностями.
  5. А). Вопрос об «асимметрии правил допустимости доказательств» (или возможности использования доказательств, полученных с нарушением закона, стороной защиты).
  6. Абсолютные величины: понятие, структура, используемые единицы измерения
  7. Абсолютные и относительные величины
  8. Абсолютные преимущества
  9. Абсолютные статистические величины
  10. Адаптивные организационные возможности.

В качестве электрода сравнения используется так называемый водородный электрод (рис.2),потенциал которого при стандартных условиях

Рис.2 Схема водородного электрода

(р=101,325КПа; Т=298К; активность ионов в растворе 1моль/л) принят равным нулю. Газообразный водород не проводит электрического тока, но, адсорбируясь на платиновой поверхности в кислой среде, образует электрод, аналогичный металлическому. Водород в виде ионов переходит в раствор, и устанавливается равновесие

.

 

При измерении электродных потенциалов металлов составляют гальванический элемент из водородного электрода сравнения (анод) и исследуемого металлического электрода (катод) при стандартных условиях. Измеряемая в этом случае ЭДС гальванического элемента

( )

при отвечает стандартному электродному потенциалу металла .

Стандартные электродные потенциалы металлов сведены в таблицу (ряд напряжений) (см. табл. 5). При значениях активностей, отличных от 1 моль/л, равновесные электродные потенциалы рассчитываются по уравнению Нернста:

,

где: аМеп+ – активность ионов металла в растворе;

R – универсальная газовая постоянная.

При небольших концентрациях растворов, применяемых в лабораториях, активность можно заменить концентрацией и после подстановки значений констант и параметров получить расчетное уравнение в виде

.

 

Зависимость электродных потенциалов от концентрации широко используют для определения многих важнейших констант: произведения растворимости, константы нестойкости, ионного произведения воды, рН водных растворов. Для этих целей используют концентрационные цепи, в которых материал электродов одинаков, а отличны лишь концентрации растворов электролитов, содержащих соответствующие катионы. Например:

;

с1 < с2 ; .

Можно построить совершенно аналогичную окислительно-восстановительную цепь с участием только ионов в каждом из процессов окисления и восстановления, при этом электроды инертные, а продукты реакции остаются в растворе и не выделяются на электродах. Например, в гальваническом элементе типа

переход электронов осуществляется от электрода с KNO2 к электроду с KMnO4, о чем свидетельствует измеритель напряжения. Для того чтобы составить уравнение электродной реакции, можно воспользоваться электронно-ионным способом, включая в уравнение только участвующие в реакции ионы, которые образуются при диссоциации сильного электролита, и молекулы слабых электролитов, в том числе воды. Уравнивание следует производить путем прибавления или отнятия молекул воды (ионов ОН или Н+ для щелочной или кислой среды соответственно).

В приведенном примере анодом будет электрод с NO2, а катодом – электрод с MnO4 в водном растворе. Поэтому реакция окисления на аноде записывается в виде

2 + Н2О – 2е 3+ 2Н+,

реакция восстановления на катоде принимает вид

MnO4+ 8Н+ + 5е Mn2+ + 4 Н2О.

Суммирование обеих полуреакций с учетом баланса электронов дает уравнение реакции в ионном виде:

 

2 MnO4+ 8Н+ + 5е Mn2+ + 4 Н2О  
5 2 + Н2О – 2е 3+ 2Н+  

2MnO4+ 6Н+ + 5NО2 2Mn2+ + 3 Н2О + 5NО3

или в молекулярном виде:

 

5KNО2 + 2KMnO4 + 3Н2 SO4 5KNО3 + 2MnSO4 + K2SO4 + 3 Н2О

Величина потенциала каждого электрода может быть определена его сравнением с водородным электродом. Так как окислительно-восстановительные потенциалы зависят от концентраций, то такое сравнение принято проводить при концентрациях окисленной и восстановленной форм, равных 1 моль/л. В таблице стандартных окислительно-восстановительных потенциалов приводятся только потенциалы восстановления (для окислителя):

MnO4+ 8Н+ + 5е® Mn2+ + 4Н2О;
2 + Н2О – 2е ® NО3+ 2Н+;

Электродная реакция, характеризующаяся меньшей величиной потенциала, определяет восстановитель и переписывается в обратном направлении; при этом знак потенциала меняется на обратный. Суммируя электродные потенциалы, можно определить величину ЭДС элемента, положительное значение которой подтверждает возможность самопроизвольного протекания реакции. По найденной величине можно рассчитать и по уравнению изотермы Вант-Гоффа определить константу равновесия К, величина которой однозначно характеризует глубину протекания процесса.

Зависимость восстановительного потенциала от концентрации ионов определяемая уравнением Нернста, а именно:

включает концентрацию тех ионов, которые написаны в уравнении электродной реакции, характеризуемой восстановительным потенциалом, после знака равенства восст) или перед знаком равенстваокисл). Концентрации окисленных и восстановленных форм ставятся в степенях их стехиометрических коэффициентов. Так, для потенциала электродов в приведенном выше случае следует записать

;

.

Окислительные свойства молекул или ионов тем сильнее, чем больше их потенциалы по алгебраической величине. Соотношения:

 

-nF = Go = – RT lnK = Ho – T So

позволяют вычислить изменения свободной энергии Go, энтальпии Ho, энтропии So и константу равновесия электрохимического процесса К по известным значениям Eo и T. Для этого достаточно знать равновесные ЭДС элементов хотя бы при двух температурах и решить систему из двух уравнений с двумя неизвестными.

1.8.2. Электролиз

 

Электролизом называют окислительно-восстановительные реакции, протекающие на электродах при прохождении электрического тока через растворы или расплавы электролитов.

При электролизе электрод, соединенный с отрицательным полюсом внешнего источника постоянного тока, называется катодом (на нем идет восстановление), соединенный с положительным полюсом источника тока – анодом (на нем идет окисление).

В любом растворяемом в воде электролите под влиянием полярных молекул воды или под влиянием нагрева безводного электролита наблюдается процесс диссоциации его молекул на ионы. Поэтому при погружении в электролит электродов, соединенных с источником тока, происходит направленное перемещение ионов: катионов (положительно заряженных ионов) к катоду, анионов (отрицательно заряженных ионов) - к аноду. Например, при электролизе раствора или расплава хлорида натрия (NaCl) ионы Na+ перемещаются к катоду ), а ионы Cl- к аноду+).

Различают растворимые и нерастворимые аноды. К первым относятся аноды, изготовленные из угля, графита или благородных металлов (золота, платины, палладия и т.п.). В этом случае к анодам перемещаются анионы кислотных остатков, и протекает соответствующий окислительный процесс. Например:

К растворимым анодам относятся аноды, изготовленные из любых металлов, кроме благородных. В этом случае происходит окисление (растворение) самого анода. Например, на медном аноде протекает следующий процесс:

Для решения вопроса о составе полученных при электролизе продуктов необходимо учесть порядок восстановления катионов на катоде и анионов на аноде. Восстанавливающийся на катоде катион называется окислителем, окисляющийся анион – восстановителем.

Руководствуясь вторым началом термодинамики, таблицей стандартных электродных потенциалов металлов и ее свойствами, утверждающими, что окислительная способность катионов возрастает сверху вниз, а восстановительная способность атомов металлов – снизу вверх, в простейших случаях можно установить следующий порядок восстановления катионов на катоде.

В первую очередь восстанавливаются катионы металлов с наиболее положительными значениями стандартных электродных потенциалов (от золота до сурьмы включительно). Например:

Во вторую очередь преимущественно восстанавливаются катионы металлов, занимающих в ряду напряжений среднее положение (от вольфрама до марганца). Например:

Вместо всех остальных активных металлов, расположенных выше марганца, восстанавливаются молекулы воды с образованием на катоде газообразного водорода , что связано с большим перенапряжением восстановления указанных металлов:

Пользуясь рядом стандартных окислительно-восстановительных потенциалов, можно приближённо установить порядок окисления анионов на аноде:

· В первую очередь окисляются анионы бескислородных кислот(S2-, I, Br, Cl, CN), за исключением иона фтора. Например:

 

· Во вторую очередь окисляются молекулы воды по уравнению:

· В третью очередь окисляются анионы бескислородных кислот. Например:

В случае растворимого анода происходит его окисление (см. выше). В случае протекания вышеперечисленных процессов по второму началу термодинамики система переходит в состояние с минимальным запасом энергии, т.е. её изобарно-изотермический потенциал понижается .

Рассмотрим примеры различных случаев электролиза.

 

Примеры электролиза растворов электролитов

с нерастворимыми анодами.

 

1. Электролиз раствора хлорида меди

Катодный процесс (-)   Анодный процесс (+)
 

Продукты, образующиеся при электролизе на электродах в результате электрохимических реакций, называются первичными продуктами электролиза.

2. Электролиз раствора сульфата цинка

Катодный процесс (-)   Анодный процесс (+)
 
   

Продукты, образующиеся в растворе у электродов в результате вторичных реакций соединения, называются вторичными продуктами электролиза. В данном примере это образовавшаяся у анода серная кислота. Цинк и кислород, образовавшиеся на электродах, - первичные продукты электролиза.

3. Электролиз раствора хлорида натрия

Катодный процесс (-)   Анодный процесс (+)
 

В приведённом примере первичными продуктами электролиза являются газы – водород и хлор, вторичными - гидроксид натрия, образовавшийся у катода.

4. Электролиз раствора сульфата натрия

Катодный процесс (-)   Анодный процесс (+)
 

В данном случае, как и при электролизе кислородсодержащих кислот и щелочей, образуется 2 первичных (водород и кислород) и 2 вторичных (щелочь и кислота) продукта.

5. Электролиз расплава хлорида натрия

Катодный процесс (-)   Анодный процесс (+)
 

 

Примеры электролиза растворов электролитов

с растворимыми анодами.

 

6. Рафинирование (очистка от примесей) анода, изготовленного из меди с примесями Zn, Sn, Ag.

Электролитом в этом случае служит раствор соли меди, анодом – медь, загрязненная примесями, катодом – графит или пластинка из чистой меди. Прилагаемое из внешнего источника напряжение не превышает стандартный электродный потенциал меди ( 0,4 В):

Катодный процесс (-)   Анодный процесс (+)
   

Для растворения серебра величина используемого напряжения недостаточна, и поэтому оно в нейтральном состоянии остается на дне электролизера в виде рыхлого осадка (в шламе). Для осаждения примесей на медном катоде требуется большое перенапряжение, и поэтому они остаются в растворе.

Подобно рафинированию методом электролиза производится покрытие одного металла другим (гальваностегия), и наносятся металлические покрытия на неметаллические полупроводниковые подложки (гальванопластика).

Приведенные примеры находят широкое применение в промышленности.

 

Законы Фарадея. Выход продукта по току

Количество веществ, образующихся при электролизе на электродах, можно рассчитать, пользуясь двумя законами электролиза, установленными Фарадеем в 1833 г. которые с учетом современной терминологии можно сформулировать в следующем виде:

1) количество вещества, испытавшего электрохимические превращения на электроде, прямо пропорционально количеству прошедшего электричества;

2) массы прореагировавших на электродах веществ при постоянном количестве электричества относятся друг к другу как молярные массы их эквивалентов.

Для расчетов используют математическое выражение обобщенного закона Фарадея:

,

где: Э – эквивалентная масса вещества (молярная масса эквивалента); F– постоянная Фарадея, равная 96500 Кл/моль;. I – сила тока, А; t – время проведения электролиза, с; М – молярная масса вещества; n – число отданных или принятых электронов; К – электрохимический эквивалент вещества.

 

Практический расход тока при электролизе вследствие протекания побочных процессов (взаимодействие полученных веществ с электродом или электролитом) превышает его количество, рассчитанное согласно закону Фарадея. Следовательно, практическая масса полученных веществ отличается от теоретически рассчитанной. Отношение массы практически полученного вещества к теоретически рассчитанной массе, выраженное в процентах, называется выходом вещества по току:

 

 

Примеры решения типовых задач.

 

Пример 1.Ряд активности металлов, электродных потенциалов.

Задача 1. Медная пластинка массой 10 г была погружена в раствор нитрата серебра, затем промыта водой и высушена. Масса ее оказалась равной 11,0 г. Сколько серебра из раствора выделилось на пластинке?

Решение. Для решения этой задачи необходимо знать стандартные электродные потенциалы металлов, т.е. место их в ряду напряжений (ряду активности металлов Бекетова).

= +0.34 В; = +0.80 В.

Из этих положительных потенциалов стандартный электродный потенциал меди менее положителен, следовательно, пойдёт реакция вытеснения:

Для того чтобы вычислить количество серебра, выделившегося на медной пластинке, надо помнить, что медная пластинка в этой реакции и сама растворяется, теряя в массе.

Обозначим количество растворившейся меди через x г, тогда масса медной пластинки с учётом её растворения будет (10-х) г, масса выделившегося серебра на основе реакции:

64,0 г Cu – 2 ∙ 108 г Ag

х г Cu – (1+х) г Ag

216х =64+64х, 152x=64, x=0,42 г.

Таким образом, в течение реакции растворилось 0,42 г меди и выделилось 1,0 + 0,42 = 1,42 г серебра.

 

Пример 2. Работа гальванического элемента и расчёт ЭДС.

Задача 1. Напишите уравнения реакций, происходящих при работе гальванического элемента, состоящего из цинковой и серебряной пластин, опущенных в растворы своих солей с концентрацией катионов, равной 1 моль/л.

Решение. Стандартные электродные потенциалы цинкового и серебряного электродов соответственно равны:

= –0,76 В; = +0,80 В.

Металл, имеющий более отрицательное значение электродного потенциала при работе гальваничеcкого элемента, является анодом. В данном случае протекают реакции:

т.е. цинк, являясь анодом, растворяется при работе гальваничеcкого элемента, а серебро осаждается в виде металла на катоде. ЭДС гальванического элемента равна

= = +0,8 – (–0,76) =1,56 В.

Пример 3. Зависимость электродных процессов от концентрации.

Задача 1. Рассчитайте, чему равна ЭДС элемента, составленного из медной и магниевой пластин, опущенных в растворы своих солей, если концентрация катиона у анода равна 0,1 моль/л, а у катода – 0,001 моль/л.

Решение. Стандартные электродные потенциалы магниевого и медного электродов соответственно равны:

= –2,38 В; = +0.34 В.

Следовательно, анодом будет магниевый электрод, катодом – медный. Электродный потенциал металла, опущенного в раствор с любой концентрацией катиона в растворе, определяют по формуле Нернста:

,

где: с – концентрация катиона, моль/л;

п – число электронов, принимающих участие в реакции.

Отсюда потенциал магниевого электрода

= –2,38 + lg10–1 = –2,38 + 0,029(–1) = –2,409 В.

Потенциал медного электрода

= +0,34 + lg10–3 = +0,34 + 0,029(–3) = +0,253 В.

Тогда для гальванического элемента

= +0,253–(–,409)=2,662В.

 

Пример 4. Определение возможности протекания реакции в гальвани-ческом элементе.

Задача 1. Исходя из величины стандартных электродных потенциалов и значения энергии Гиббса ΔGо298, укажите, можно ли в гальваническом элементе осуществить следующую реакцию:

Fe0 + Cd2+= Fe2+ + Cd0.

Решение. Надо составить схему гальванического элемента, отвечающего данной реакции. В этой реакции происходит восстановление ионов кадмия и окисление атомов железа:

Fe 0 – 2е = Fe 2+

Cd 2+ + 2е = Cd 0.

Пользуясь таблицей стандартных электродных потенциалов, определяем ЭДС этого гальваничекого элемента:

= –0,40– (–0,44)=0,04 В.

Изменение величины энергии Гиббса с величиной ЭДС связано соотношением:

= – nF ,

где: – изменение величины энергии Гиббса;

n – число электронов, принимающих участие в реакции;

F–число Фарадея;

ЭДС гальванического элемента.

Находим = –2∙96500∙0,04= – 7720 Дж.

Так как >0, <0, следовательно, данную реакцию можно осуществить в гальваническом элементе. Реакция в прямом направлении идёт самопроизвольно.

 

Пример 5. Расчет количества вещества, выделившегося при электролизе.

Задача 1. Какая масса меди осаждается на катоде при прохождении тока силой 2 А через раствор медного купороса в течение 15 минут?

Решение. Сначала нужно узнать количество электричества, прошедшее через раствор, выразив его в кулонах (1Кл=А.с). Количество электричества Q=I =2.15.60=1800 Кл. Молярная масса эквивалента меди (II) равна 64,0/2=32 г/моль. Следовательно:

 

96500 Кл – 32 г
1800 Кл – х г

Пример 6. Определение электрохимического эквивалента и выхода по току.

Задача 1. При электролизе водного раствора AgNO3 в течение 50 минут при силе тока 3А выделилось 9,6 г серебра. Электролиз проводился с растворимым анодом. Напишите уравнение реакций катодного и анодного процессов и определите электрохимический эквивалент серебра в г/Кл и г/А.ч и выход по току.

Решение. Нитрат серебра диссоциирует:

Процессы, протекающие на электродах:

Молярная масса эквивалента AgО =108 г/моль.

Определяем массу серебра, которая выделилась бы теоретически при прохождении через раствор данного количества электричества:

Выход по току

Электрохимический эквивалент

 

 


<== предыдущая страница | следующая страница ==>
При составлении уравнений окислительно-восстановительных реакций в основном используют 2 метода: метод электронного баланса и метод электронно-ионного баланса | ОТ КОРРОЗИИ

Дата добавления: 2014-10-14; просмотров: 903; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.016 сек.