Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




ЛЕКЦИЯ №12 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ДИЭЛЕКТРИКАХ

Читайте также:
  1. АКУСТИКА ЗАЛОВ (лекция 3, 4)
  2. Анемии (Лекция № XVIII) Часть 2.
  3. Блок 3.10. Лекция 17. Управление в области безопасности
  4. Блок 3.2. Лекция 9. Опасности техногенного характера
  5. Вихревое электрическое поле. Правило Ленца. Самоиндукция. Индуктивность
  6. Гемостаз (Лекция № XXI).
  7. Гигиена питания лекция.
  8. Жемчужины Мудрости. Лекция Элизабет Клэр Профет о Циклопее
  9. Защита от шума строительно-акустическими методами (лекция 5)
  10. История лекция 5 Тема: средневековье как стадия исторического процесса

ДИПОЛЬ

Система, состоящая из двух одинаковых по величине и противоположных по знаку зарядов, разделенных некоторым промежутком, образуют диполь.Диполь является основным модельным представлением, которое используется для описания поля в диэлектриках. Электрический момент диполя, равный произведению величины заряда на расстояние между ними, направлен от – к + заряду.

 

ДИПОЛЬ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ. Однородное поле. Силы, действующие на – и + заряды равны по величине и противоположны по направлению. Поэтому в однородном поле возможен лишь поворот диполя относительно своего центра. Момент сил, действующих на диполь .

Электрическое поле оказывает ориентирующее действие на диполь, стремясь повернуть его так, чтобы его электрический момент был направлен по полю.

Неоднородное поле. Силы, действующие на + и – заряды, не равны по величине, поэтому электрическое поле оказывает не только ориентирующее воздействие на диполь, но и стремится переместить его в область больших полей.

Работа поворота диполя в электрическом поле: A=pE(cosa1-cosa2)

Энергия диполя в электрическом поле: W=-(pE)

 

Как и в случае проводников, диэлектрики существенно изменяют величину поля, создаваемого заряженными телами. По аналогии с металлами можно предположить, что в электрическом поле на поверхности диэлектриков возникают некомпенсированные заряды. Если под действием поля электрические заряды свободно перемещаются по проводникам, то в диэлектриках на очень малое перемещение возможно только в пределах отдельных молекул, составляющих диэлектрик.

ПОЛЯРНЫЕ И НЕПОЛЯРНЫЕ МОЛЕКУЛЫ

Если центры + и – зарядов совпадают, то такие молекулы называются неполярными. Если центры + и – зарядов не совпадают, то такие молекулы называются полярными.

НЕПОЛЯРНЫЕ МОЛЕКУЛЫ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ В электрическом поле + заряды смещаются по полю, а – против поля. Оказывается, что во многих случаях расстояние l между центрами + и – в неполярных молекулах увеличивается пропорционально величине электрического поля l~E

Поскольку под действием электрического поля изменяется состояние неполярного диэлектрика, этот процесс называется деформационной поляризацией. Говорят, что неполярные молекулы в электрическом поле ведут себя как упругий диполь.

ПОЛЯРНЫЕ МОЛЕКУЛЫ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ Газообразное состояние. В газообразном состоянии, как правило, молекулы находятся на достаточно большом расстоянии по сравнению с их размерами и участвуют в тепловом хаотическом движении. Каждая полярная молекула имеет дипольный момент рi. Однако из-за наличия теплового движения суммарный дипольный момент совокупности полярных молекул равен нулю.

Жидкое состояние. Для жидкого состояния вещества характерно наличие ближнего порядка. Из принципа минимума потенциальной энергии следует, что + одного диполя «прилипает» к – соседнего диполя. Каждая полярная молекула имеет дипольный момент рi .Однако из-за принципа min Wp суммарный дипольный момент совокупности полярных молекул равен нулю. Эти молекулы также участвуют в тепловом, хаотическом движении.

Полярные молекулы, попадая в электрическое поле, испытывают два противоположных воздействия: - ориентирующее воздействие электрического поля - и дезориентирующее воздействие теплового, хаотического движения. Оказывается, что во многих случаях из-за борьбы этих воздействий, суммарный дипольный момент совокупности полярных молекул пропорционален напряженности поля. В случае кристаллических диэлектриков, имеющих ионное строение, электрическое поле приводит к смещению положительных ионов в направлении Е и отрицательных – в противоположную сторону. В электрическом поле дипольный момент кристаллического диэлектрика направлен вдоль поля и пропорционален величине его напряженности. Говорят, что полярные молекулы в электрическом поле ведут себя как жесткий диполь.

ДИЭЛЕКТРИК В ЭЛЕКТРИЧЕСКОМ ПОЛЕ ВЕКТОР ПОЛЯРИЗАЦИИ

Поместим тело, состоящее из диэлектрика различного вида поляризации, в электрическое поле

Независимо от вида поляризации и объема тела суммарный электрический момент диэлектрика пропорционален напряженности поля. Поэтому величину суммарного электрического момента диэлектрика можно определить, зная электрический момент единицы объема и объем тела: где Р – вектор поляризации

Вектор поляризации пропорционален напряженности электрического поля

где β – диэлектрическая восприимчивость

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ДИЭЛЕКТРИКЕ

 

Поместим между обкладками плоского конденсатора диэлектрик из неполярных молекул

При замыкании ключа К пластины заряжаются и диэлектрик, находящийся между ними, поляризуется. Поле, создаваемое поляризационными зарядами в диэлектрике, можно определить как поле, создаваемое в объеме поляризованного диэлектрика, и поля нескомпенсированных зарядов на поверхности

Несмотря на поляризацию, результирующее макроскопическое поле, создаваемое объемным зарядом, равно нулю.

Поле, создаваемое нескомпенсированными зарядами на поверхности, можно представить как поле двух параллельно заряженных плоскостей: где σ‘ – поверхностная плотность нескомпенсированного заряда. С другой стороны эти заряды можно рассматривать как гигантский диполь:

Из сравнения выражений, определяющич электрический момент диэлектрика следует: σ’=P

Таким образом, силовые линии напряженности электрического поля терпят разрыв на границе диэлектрика, что неудобно при расчетах электрических полей в среде, содержащей диэлектрик. Для ликвидации этого неудобства вводится вспомогательный вектор D – вектор электростатической индукции или электрического смещения D=ε0E+P

Трансформация основных соотношений электростатики Из факта уменьшения напряженности поля в диэлектрике по сравнению с ее значением в вакууме на величину ε следует, что во всех основных соотношениях электростатики, к величине ε0 необходимо добавить ε :

Теорема Гаусса при наличии диэлектрика. Трудности при вычислении этого интеграла состоят в том, что необходимо суммировать не только свободные, но и связанные заряды, возникающие на границе диэлектрика. Поэтому имеет смысл перейти от вектора Е к вектору D, поскольку его величина не зависит от поляризации диэлектрика (связанные заряды)

Появление вспомогательного вектора D, предназначенного для описания электрического поля в среде, обусловлено пропорциональностью между векторами Р и Е, что выполняется далеко не всегда. Это случаи анизотропных диэлектриков, сегнетоэлектриков, электретов, электрических полей высокой частоты.

 

 


<== предыдущая страница | следующая страница ==>
РАБОТА ПО ПЕРЕМЕЩЕНИЮ ЗАРЯДА В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ. ПОТЕНЦИАЛ, РАЗНОСТЬ ПОТЕНЦИАЛОВ | ЭЛЕКТРИЧЕСКИЙ ТОК

Дата добавления: 2014-11-24; просмотров: 310; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.003 сек.