![]() Главная страница Случайная лекция ![]() Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика ![]() Мы поможем в написании ваших работ! |
Уравнения Лагранжа 2-го рода
Одним из преимуществ аналитической механики является использование обобщенных координат. Обобщенными координатами механической системы называются независимые между собой параметры q1, q2, …, qS любой размерности, однозначно определяющие положение системы в любой момент времени. Число обобщенных координат равно S – числу степеней свободы механической системы. Положение каждой ν-й точки системы, то есть ее радиус вектор в общем случае всегда можно выразить в виде функции обобщенных координат:
Общее уравнение динамики в обобщенных координатах выглядит в виде системы S уравнений следующим образом:
……..………. ;
………..……. ;
здесь
а
Уравнения Лагранжа 2-го рода выводятся из общего уравнения динамики в обобщенных координатах. Число уравнений соответствует числу степеней свободы:
Для составления уравнения Лагранжа 2-го рода выбираются обобщенные координаты
В числителе правой части формулы – сумма элементарных работ все активных сил на возможном перемещении системы, соответствующем вариации i-й обобщенной координаты – 3. Задания Варианты заданий выдаются преподавателем. Схемы механических систем представлены на рис.1–30, номера которых соответствуют номерам вариантов. Исходные данные, необходимые для решения, содержатся в таблице 1 (стр.31–32). Параметры, подлежащие определению, указываются в разделе 4, в котором приведена методика выполнения работы. При решении задач учесть следующее: · При выполнении пунктов 4.1 - 4.3, механической системой считать расположенную на идеально гладкой поверхности призму 3 и находящиеся на ней блоки A и B, а также тела 1 и 2, одно из которых скользит по поверхности призмы, а второе (каток) катится без проскальзывания. Движение системы считать происходящим только за счет сил тяжестей тел, составляющих систему, а показанные на рисунках силу F и момент M исключить. · При выполнении пунктов 4.4 - 4.8, в качестве механической системы рассматривать тела, находящиеся на призме, а саму призму считать неподвижным основанием. Помимо сил тяжестей тел учитывать действие силы F и момента M . · Радиусы инерции блоков и катков вычислять по формуле · Коэффициент трения качения для катка определять как · Каток катиться без проскальзывания, коэффициент трения сцепления катка подлежит определению при решении задачи; · Коэффициент трения скольжения тела (1 или 2), которое движется по призме 3 поступательно, принять f = 0,1; · Нити невесомы и нерастяжимы; · Зубчатые рейки невесомы.
Дата добавления: 2014-12-09; просмотров: 439; Нарушение авторских прав ![]() Мы поможем в написании ваших работ! |