Главная страница Случайная лекция Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика Мы поможем в написании ваших работ! |
Электрическое поле заряженного цилиндра
Пример 2.11. Поверхность бесконечного длинного кругового цилиндра заряжена однородно с линейной плотностью λ. Определите напряженность электрического поля внутри и вне цилиндра. Полученный результат представьте на графике , где - проекция вектора напряженности на ось r, перпендикулярную поверхности цилиндра, с началом отсчета на его оси симметрии. Решение. Наличие осевой симметрии в распределении заряда, позволяет сделать вывод о том, что вектор направлен радиально - к линии оси цилиндра или от нее, в зависимости от знака заряда. Ввиду той же симметрии величина напряженности может зависеть только от расстояния до оси цилиндра: Е = Е ( r ). Для определения этой зависимости выберем гауссову поверхность следующим образом. Построим цилиндр с боковой поверхностью удаленной от оси на расстояние и основаниями, перпендикулярными к оси цилиндра. Поток вектора через оба основания цилиндра равен нулю, т.к. . Поток через боковую поверхность равен Е× S , т.к. , S- площадь боковой поверхности. Из теоремы Гаусса следует:
Для величины проекции получим: , если r<R, , если > R. График этой зависимости, представленный на Рис.10, характеризуется скачком величины напряженности при , что отражает идеализацию распределения заряда на геометрической поверхности.
Дата добавления: 2015-06-30; просмотров: 174; Нарушение авторских прав Мы поможем в написании ваших работ! |