Главная страница Случайная лекция Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика Мы поможем в написании ваших работ! |
Пример 2.12
Область внутри бесконечного длинного кругового прямого цилиндра радиуса R заряжена однородно с объемной плотностью ρ. Определите напряженность электрического поля внутри и вне цилиндра. Полученный результат представьте на графике , где - проекция вектора напряженности на ось r, перпендикулярную поверхности цилиндра, с началом отсчета на его оси симметрии. Решение. Наличие осевой симметрии в распределении заряда, позволяет сделать вывод о том, что вектор направлен радиально - к линии оси распределения заряда или от нее, в зависимости от знака заряда. Ввиду той же симметрии величина Е может зависеть только от расстояния до оси: Е = Е ( r ) Для определения этой зависимости выберем гауссову поверхность следующим образом . Построим цилиндр с боковой поверхностью удаленной от нити на расстояние r и основаниями, перпендикулярными к нити. Высота цилиндра . Поток вектора через оба основания цилиндра равен нулю, т.к. . Поток через боковую поверхность равен Е× S , т.к. , S- площадь боковой поверхности. Из теоремы Гаусса следует:
Для величины проекции получим: при при . График, представленный на Рис.11 характеризуется отсутствием скачка величины напряженности поля при r=R в отличие от случая распределения заряда на поверхности цилиндра.
Дата добавления: 2015-06-30; просмотров: 123; Нарушение авторских прав Мы поможем в написании ваших работ! |