Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Пример 2.12

Область внутри бесконечного длинного кругового прямого цилиндра радиуса R заряжена однородно с объемной плотностью ρ. Определите напряженность электрического поля внутри и вне цилиндра. Полученный результат представьте на графике , где - проекция вектора напряженности на ось r, перпендикулярную поверхности цилиндра, с началом отсчета на его оси симметрии.

Решение.

Наличие осевой симметрии в распределении заряда, позволяет сделать вывод о том, что вектор направлен радиально - к линии оси распределения заряда или от нее, в зависимости от знака заряда. Ввиду той же симметрии величина Е может зависеть только от расстояния до оси:

Е = Е ( r )

Для определения этой зависимости выберем гауссову поверхность следующим образом . Построим цилиндр с боковой поверхностью удаленной от нити на расстояние r и основаниями, перпендикулярными к нити. Высота цилиндра . Поток вектора через оба основания цилиндра равен нулю, т.к. . Поток через боковую поверхность равен Е× S , т.к. , S- площадь боковой поверхности. Из теоремы Гаусса следует:

Для величины проекции получим:

при

при .

График, представленный на Рис.11 характеризуется отсутствием скачка величины напряженности поля при r=R в отличие от случая распределения заряда на поверхности цилиндра.

 
 

 


Рис.11
Дифференциальная форма теоремы Гаусса Пример 2.13 В некоторой области вектор напряженности электрического поля зависит от координат x, y, z прямоугольной системы координат по закону , где a - известная постоянная, , и - орты осей. Определите объемную плотность заряда в данной области. Решение. Плотность распределения заряда определяется выражением . Представляя дивергенцию в координатной форме, получим:

<== предыдущая страница | следующая страница ==>
Электрическое поле заряженного цилиндра | Пример 2.14

Дата добавления: 2015-06-30; просмотров: 123; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.002 сек.