Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




ТЕОРЕТИЧЕСКАЯ ЧАСТЬ. Соединения сложного состава, в которых можно выделить центральный атом и непосредственно связанные с ним молекулы или ионы называются комплексными или

Лабораторная работа № 3

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Соединения сложного состава, в которых можно выделить центральный атом и непосредственно связанные с ним молекулы или ионы называются комплексными или координационными соединениями. Существование комплексных соединений было установлено Альфредом Вернером, награжденным в 1913 году Нобелевской премией за разработку химии координационных соединений.

 

Строение комплексных соединений.

K3+[Fe3+(CN)6] [Co3+(NH3)60]Cl3

лиганды лиганды

комплексообразователь комплексообразователь

 

Fe3+, Co3+ - комплексообразователь, всегда пишется на первом месте после квадратных скобок. Комплексообразователем, как правило, являются металлы и чаще всего d-элементы, но существует целый ряд комплексных соединений, где центральным атомом служит неметалл – Si, P, As.

CN, NH30 – лиганды, молекулы или ионы, окружающие центральный атом, представлены нейтральными молекулами или анионами. Лигандами могут быть и сложные органические соединения.

[Fe3+(CN)6]3−, [Co3+(NH3)60]3+ - комплексный ион или внутренняя сфера, в зависимости от степени окисления может быть комплексным катионом, комплексным анионом, электронейтральным комплексом.

K+, Cl - ионы составляющие внешнею сферу.

Координационное число комплексообразователя – это число атомов лигандов, координированных вокруг центрального атома, обычно бывает четным числом (2,4,6,8). Координационное число центрального атома металлы не связано с его степенью окисления, но, как правило, превышает её.

В зависимости от числа донорных атомов лиганда, различают моно-, би- и полидентантные лиганды. Лиганды, координирующиеся через два или более донорных атомов к одному центральному атому, называются хелатными.

Комплексные соединения, в которых два или более комплексообразователя, называются би- или полиядерными комплексными соединениями – [Sn2(OH)2]2+, [Sn3(OH)4]2+, чаще всего данные комплексы образуются при гидролизе.

 

Написание комплексных соединений

 

При написании формулы внутренней сферы на первом месте после квадратных скобок пишется центральный атом, т.е. комплексообразователь. Затем лиганды с указанием их числа –n, если лиганды разные, то они записываются в следующем порядке – нейтральные лиганды с указанием их числа, потом анионы, также с указанием их числа.

Например:

[Co3+(NH3)50 Cl]2+, [Pt4+(NH3)40Cl2]2+

При составлении формулы комплексного соединения индексы следует расставить таким образом, чтобы сумма всех зарядов была равна нулю.

Например:

K22+[Pt4+(OH)6]2−

 

Классификация комплексных соединений

 

В зависимости от заряда комплексного иона комплексные соединения делятся на катионные, анионные и нейтральные:

катионные анионные нейтральные
[Cu(NH3)4]2+(OH)2 [Ni(H2O)4]2+Cl2 [Cr(H2O)5Cl]2+Cl2 K2+[PtF6]2− K3+[Co(CN)6]3− Na2+[PdCl6]2− [Ni(CO)4] [Pt(NH3)2Cl2] [Fe(NH3)4Cl2]

Также комплексные соединения делятся на кислоты, основания и соли.

 

Номенклатура комплексных соединений

 

Образование названий анионных и катионных комплексов отличается. Название катионного комплекса начинают записывать с названия внешней сферы, затем одним словом пишется название комплексного катиона, начало которого составляет название лигандов с указанием их числа, обозначаемого префиксами – ди-, три-, тетра-, пента-, гекса-. Последним записывают комплексообразователь с указанием степени окисления римской цифрой.

Например:

[Cu(NH3)4](OH)2 − гидроксид тетраамминмеди(II)

[Cr(H2O)5Cl]Cl2 − хлорид хлоропентааквахрома(III)

[Co(NH3)4(NO2)Cl]NO3 − нитрат хлоронитротетраамминкобальта(III)

 

Образование названий анионных комплексов начинают с названия комплексного аниона в соответствии с теми же правилами, что и названия комплексного катиона, но с добавлением суффикса «ат» к названию комплексообразователя. Затем называют ионы внешней сферы.

Например:

K3[Co(CN)6] − гексацианокобальтат(III) калия

K[Pt(NH3)Cl3] − трихлороамминплатинат(II) калия

K[Au(CN)2] − дицианоаурат(I) калия

 

Образование названий нейтральных комплексов начинается с названия и числа лигандов, затем называется комплексообразователь и его степень окисления.

Например:

[Ni(CO)4] − тетракарбонилникеля

[Pt(NH3)2Cl2] − дихлородиамминплатины(II)

 

Таблица 1

Названия лигандов

 

лиганды название
H2O NH3 CO NO CS OH F Cl Br I CN NCS NO2   аква- амин- карбонил- нитрозил- тиокарбонил- гидроксо- фторо- хлоро- бромо- йодо- циано- тиоциано- (родано-) нитро-  

Пространственное строение комплексных соединений

 

В пространстве комплексные ионы имеют форму многогранников (в соответствии с моделью Кеперта атом металла лежит в центре многогранника, а лиганды располагаются в вершинах многогранника). Возможны следующие конфигурации:

- линейное расположение – комплексы с координационным числом 2 − [CuCl2], [Ag(CN)2].

- плоский равносторонний треугольник – комплексы с координационным числом 3 − [HgI3].

- тетраэдрическая конфигурация – комплексы с координационным числом 4 − [BF4].

- плоский квадрат – комплексы с координационным числом 4 − [Pt(NH3)2Cl2].

- тригонально-бипирамидальная конфигурация - комплексы с координационным числом 5 − [Fe(CO)5].

- октаэдрическая конфигурация − комплексы с координационным числом 6 − [PtCl6]2−.

 

Изомерия комплексных соединений.

Рассматривают два типа изомерии комплексных соединений. Первый тип изомеров – при котором состав внутренней сферы не изменяется, это может быть пространственная или оптическая изомерия.

 

 

Например:

Пространственные изомеры комплексного соединения [Pt(NH3)2Cl2]

 

Второй тип комплексных изомеров – при котором меняется состав внутренней сферы – ионизационная, гидратная изомерия.

Например:

Гидратная изомерия комплексного соединения [Cr(H2O)6]Cl3:

[Cr(H2O)5Cl]Cl2 ∙ H2O, [Cr(H2O)4Cl2]Cl∙2H2O

Устойчивость комплексных соединений

 

В водном растворе диссоциация комплексных соединений протекает полностью на внешнию сферу и комплексный ион. Диссоциация комплексного иона протекает незначительно и характеризуется так называемой константой нестойкости.

 

[Fe(CN)6]4− ↔ Fe2+ + 6CN

 

 



<== предыдущая страница | следующая страница ==>
Порядок выполнения работы и обработки результатов измерения | ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Дата добавления: 2015-06-30; просмотров: 182; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.005 сек.