![]() Главная страница Случайная лекция ![]() Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика ![]() Мы поможем в написании ваших работ! |
Упруго-пластический расчет стержня при действии продольной силы
Рис.22.2
Определить перемещение сечения А ступенчатого стержня изображенного на рис.22.2, а при различных стадиях его деформирования при нагружении его силой Р. Диаграмма деформирования изображена на рис.22.2, б.
Решение: В данном случае все составляющие тензора напряжений и деформаций за исключением sх и eх тождественно равны нулю. При этом участок АС испытывает растяжения, а участок АВ - сжатие. Следует выделить следующие этапы работы конструкций. На первом этапе, участки АС и АВ деформируются в упругой стадии, т.е.:
На втором этапе, один из участков АВ или АС переходит в упруго-пластическую стадию деформирования. И, наконец, когда оба участка АВ и АС деформируются в упруго-пластической стадии. Связь между sх и eх в упруго-пластической стадии деформирования согласно диаграмме s~e записывается в виде:
На первом этапе нагружения, когда в обоих участках материал конструкции деформируется по закону Гука, учитывая, что система один раз статически неопределима усилия N обоих участков определяется обычными приемами. Из условий равновесия имеем: -N1 + N2 = P. (22.10) Учитывая, что стержни верхним и нижним концами жестко закреплены, его абсолютное удлинение должно быть равно нулю, т.е.:
откуда
В результате совместного рассмотрения (22.10) и (22.11) получим:
Перемещение сечения А будет следующим:
В упругой стадии работы конструкции значения напряжения на первом и втором участках соответственно принимают значения:
Так как Из выражения (22.14), принимая
Для второго этапа нагружения, необходимо преобразовать уравнения совместности деформаций:
Выражение (22.9) представим в виде:
Тогда
Подставляя (22.18) в (22.16) получим:
Совместно решая (22.19) с уравнением равновесия (22.10) получим:
Принимая в (22.20) Е = Е1, можно убедиться, что из (22.20) следуют упругие решения (22.14). Перемещая сечения А на данном этапе нагружения определяется по формуле:
Переходим к решению поставленной задачи на третьем этапе нагружения. Принимая
На третьем этапе нагружения, т.е.
Подставляя (22.23) и (22.18) в (22.16) получим:
В результате совместного рассмотрения (22.24) и (22.10) определяется:
Принимая Е = Е1 из (22.25) получим решение задачи в упругой постановке, которая полностью согласуется выражением (22.12). Перемещение сечения А на третьем этапе нагружения определяется по выражению:
Если в последнем варианте предположить Е = Е1, то отсюда следует решение в упругой постановке задачи, и полностью совпадающей с решением (22.13).
Дата добавления: 2015-07-26; просмотров: 282; Нарушение авторских прав ![]() Мы поможем в написании ваших работ! |