![]() Главная страница Случайная лекция ![]() Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика ![]() Мы поможем в написании ваших работ! |
МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙКОВАЛЕНТНАЯ СВЯЗЬ
Метод МО есть распространенный на молекулы метод атомных орбиталей. Предполагается, что электроны в молекуле находятся на орбиталях, охватывающих все ядра в молекуле. Для построения волновой функции основного состояния молекулы распределяют все ее электроны по МО с наименьшей энергией по вариационному методу, учитывая ограничения, налагаемые принципом Паули, согласно которому на одной орбитали не может находиться больше двух электронов. Чаще всего в методе МО применяют приближение ЛКАО для построения МО. Вблизи ядра электроны находятся в поле потенциала, создаваемого в основном этим ядром. Поле, обусловленное другими ядрами, в этой области сравнительно мало. Поэтому, вблизи ядра МО должна быть близка к АО соответствующего атома. Учитывая это, предполагают, что разумное приближение к МО во всех точках пространства можно получить, беря линейную комбинацию атомных орбиталей, относящихся ко всем атомам в молекуле. y = åciji y -МО j -АО сi- коэффициенты Если в это разложение включить достаточно большое число АО, то, вычисляя коэффициенты на основе вариационного принципа, можно получить хорошее приближение к истинной МО. Рассмотрим сущность вариационного метода. Уравнение Шредингера Нy=Еy Е- полная энергия молекулы Умножив обе части на ydt и проинтегрировав получим E = Если волновая функция является одним из решений волнового уравнения, то расчет по этой формуле дает значение дозволенного уровня энергии электрона Е, dt - элемент объема пространства. Если представить искомую волновую функцию в виде y1 = c1j1 + c2j2 + ¼+cnjn то выражение может быть записано
где e меняется в зависимости от выбора y и называется энергетической функцией. Ввариационном методе исходят из того,что чем меньше энергетическая функция ,тем она ближе к действительному значению энергии основного состояния, а выбранная функция к истинной. Очевидно, что при подстановке уравнение величина энергетической функции будет зависеть от коэффициентов с1,.с2, cn . Согласно вариационному методу эти коэффициенты нужно выбирать так, чтобы значения энергетической функции были минимальными. Это удобно делать, рассматривая коэффициенты как переменные величины. Тогда условия минимума выразятся системой уравнений
Решение системы уравнений позволяет найти значения с1,с2,сn, при которых энергетическая функция минимальна. В качестве примера рассмотрим простейшую молекулярную частицу - молекулярный ион водорода Н2+. Согласно метода ЛКАО молекулярную орбиталь можно представить в виде y = с1 jа + с2 jв где а и в - обозначения ядер Поскольку атомы неразличимы, то плотность вероятности нахождения электрона около каждого из ядер должна быть одной и той же. Это выполняется в случае с12 = с22 с1 = с2 yg = Сg ( ja+ jb ) с1 = -с2 yu = Сu ( ja - jb ) yg - симметричная волновая функция yu - антисимметричная волновая функция Симметричная функция отражает увеличение плотности электронного облака в области перекрывания между двумя атомами по сравнению с плотностью облаков отдельных атомов. Увеличение плотности отрицательно заряженного электронного облака между положительными ядрами приводит к тому, что ядра как бы стягиваются этим облаком и возникает химическая связь. Система электрон в поле двух протонов находится в энергетически более выгодном состоянии Е ,чем исходная система электрон в поле одного протона Eg Поэтому yg называется связывающей молекулярной орбиталью. Антисимметричной волновой функции отвечает уменьшение плотности электронного облака между атомами. При этом полoжительно заряженные атомы отталкиваются и система становится неустойчивой. Молекулярной орбитали отвечает энергия большая, чем энергия атома водорода
Eu Eg Орбиталь yu ,соответствующая повышению энергии, называется разрыхляющей МО.
Дата добавления: 2014-03-11; просмотров: 435; Нарушение авторских прав ![]() Мы поможем в написании ваших работ! |