Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Лазерный термоядерный синтез (УЛС)

Читайте также:
  1. Алгоритм синтеза многосвязных автономно-инваринатных ЦСУ
  2. Анализ и синтез в моделировании
  3. Биосинтез белка
  4. Биосинтез гликогена. Гликогенез.
  5. В паузу идет ресинтез белка.
  6. Генами называют участки ДНК кодирующие синтез тРНК, рРНК и мРНК Гены кодирующие мРНК называют генами белков
  7. ЗАКОН ЕДИНСТВА АНАЛИЗА И СИНТЕЗА
  8. Занятие 14.Основные углеводы пищи. Переваривание и всасывание углеводов. Синтез и распад гликогена.
  9. Каскадный механизм мобилизации и синтеза гликогена

Другим путем достижения этой цели является лазерный термоядерный синтез. Сущность такого метода состоит в следующем. Замороженную смесь дейтерия и трития, приготовленную в виде шариков диаметром менее 1 мм, равномерно облучают со всех сторон мощным лазерным излучением. Это приводит к нагреванию и испарению вещества с поверхности шариков. При этом давление внутри шариков возрастает до величин порядка 1015 Па. Под действием такого давления происходят увеличение плотности и сильное нагревание вещества в центральной части шариков и начинается термоядерная реакция.

В отличие от магнитного удержания плазмы, в лазерном время удержания (т. е. время существования плазмы с высокой плотностью и температурой, определяющее длительность термоядерных реакций) составляет 10–10 — 10–11 с, поэтому ЛТС может осуществляться только в импульсном режиме. Предложение использовать лазеры для термоядерного синтеза впервые было высказано в Физическом институте им. П. Н. Лебедева АН СССР в 1961 Н. Г. Басовым и О. Н. Крохиным.

 

 

Рис. 6.

 

В Ливерморской национальной лаборатории имени Лоуренса в Калифорнии закончено (май 2009) строительство самого мощного в мире лазерного комплекса. Он получил название «Национальная зажигательная установка» (US National Ignition Facility, NIF). Строительство продолжалось 12 лет. На лазерный комплекс было потрачено 3,5 млрд. долл.

 

 

Рис. 7. Принципиальная схема УЛС

 

В основе NIF – 192 мощных лазера, которые будут одновременно направляться на миллиметровую сферическую мишень (около 150 микрограммов термоядерного топлива – смесь дейтерия и трития; в дальнейшем радиоактивный тритий можно будет заменить легким изотопом гелия-3). Температура мишени достигнет в результате 100 млн. градусов, при этом давление внутри шарика в 100 млрд. раз превысит давление земной атмосферы.

Закон Хаббла

Красное смещение — сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может быть выражением эффекта Доплера. Параметр смещения определяется как ,
где и — значения длины волны в точках наблюдения и испускания излучения соответственно.

У большинства исследованных до сих пор галактик обнаруживается красное смещение спектральных линий. Оно было истолковано Э. II. Хабблом (1929) как своеобразное разбегание. Исходя из сравнительно малого числа таких наблюдений, было сделано заключение о всеобщем расширении системы галактик. При этом речь идет об «убегании» галактик друг от друга, а не о разлетании нескольких галактик самих по себе, когда их внутренние гравитационные поля недостаточно сильны, чтобы воспрепятствовать этому разлетанию.

На протяжении веков разные космологические модели сменяли друг друга, но считалось абсолютно незыблемым, что Вселенная бесконечна во времени и пространстве. Звездное небо над головой являлось символом вечности и неизменности.

Рисунок 8.1.2.1. Закон Хаббла

В XX веке стали известны два экспериментальных факта, подтверждающих расширение Вселенной:

· красное смещение,

· реликтовое излучение.

В 1929 году, исходя из наблюдений спектров галактик, американский астроном Эдвин Хаббл сформулировал закон: скорости удаления галактик возрастают пропорционально расстоянию до них:

 

 

Этот закон получил название закона Хаббла. Постоянная Хаббла в настоящее время принимается равной H = 70 км/(с∙Мпк).

Закон Хаббла вовсе не означает, что наша Галактика является центром, от которого и идет расширение. В любой точке Вселенной наблюдатель увидит ту же самую картину: все галактики имеют красное смещение, пропорциональное расстоянию до них. Поэтому иногда говорят, что расширяется само пространство. Это, естественно, следует понимать условно: галактики, звезды, планеты и мы с вами не расширяемся.

В настоящие время принято считать, что разбегание галактик, связанное с общим расширением окружающей нас части Вселенной, есть результат Большого Взрыва.

 

Сценарии дальнейшей эволюции Вселенной

Вселенная и в наши дни продолжает свою эволюцию, так как эволюционируют её части. Время этой эволюции для каждого типа объектов разнится более чем на порядок. И когда жизнь объектов одного типа заканчивается, то у других всё только начинается. Это позволяет разбить эволюцию Вселенной на эпохи]. Однако конечный вид эволюционной цепи зависит от скорости и ускорения расширения: при равномерной или почти равномерной скорости расширения будут пройдены все этапы эволюции и будут исчерпаны все запасы энергии. Этот вариант развития называется тепловой смертью.

Если скорость будет всё нарастать, то, начиная с определённого момента, сила, расширяющая Вселенную, сначала превысит гравитационные силы, удерживающие галактики в скоплениях. За ними распадутся галактики и звёздные скопления. И, наконец, последними распадутся наиболее тесно связанные звёздные системы. Спустя некоторое время, электромагнитные силы не смогут удерживать от распада планеты и более мелкие объекты. Мир вновь будет существовать в виде отдельных атомов. На следующем этапе распадутся и отдельные атомы. Что последует за этим, точно сказать невозможно: на этом этапе перестает работать современная физика.

Вышеописанный сценарий — это сценарий Большого разрыва. Существует и противоположный сценарий — Большое сжатие. Если расширение Вселенной замедляется, то в будущем оно прекратится и начнётся сжатие. Эволюция и облик Вселенной будут определяться космологическими эпохами до того момента, пока её радиус не станет в пять раз меньше современного. Тогда все скопления во Вселенной образуют единое мегаскопление, однако галактики не потеряют свою индивидуальность: в них всё также будет происходить рождение звёзд, будут вспыхивать сверхновые и, возможно, будет развиваться биологическая жизнь. Всему этому придёт конец, когда Вселенная ужмётся ещё в 20 раз и станет в 100 раз меньше, чем сейчас; в тот момент Вселенная будет представлять собой одну огромную галактику.

Температура реликтового фона достигнет 274 К и на планетах земного типа начнёт таять лёд. Дальнейшее сжатие приведёт к тому, что излучение реликтового фона затмит даже центральное светило планетарной системы, выжигая на планетах последние ростки жизни. А вскоре после этого испарятся или будут разорваны на куски сами звёзды и планеты. Состояние Вселенной будет похоже на то, что было в первые моменты её зарождения. Дальнейшие события будут напоминать те, что происходили в начале, но промотанные в обратном порядке: атомы распадаются на атомные ядра и электроны, начинает доминировать излучение, потом начинают распадаться атомные ядра на протоны и нейтроны, затем распадаются и сами протоны и нейтроны на отдельные кварки, происходит великое объединение. В этот момент, как и в момент Большого взрыва, перестают работать известные нам законы физики и дальнейшую судьбу Вселенной предсказать невозможно.

 

Возникновение Вселенной. Теория Большого Взрыва

Проблема эволюции Вселенной является центральной в естествознании. Вопросы о том, как велик окружающий нас звездный мир и когда он возник или был создан, интересуют людей с незапамятных времен. В различных мифах, натурфилософских представлениях до нас дошли идеи о бесконечном пространстве и времени. Действительно, утверждения о том, что мир возник из какого-то первичного хаоса или был сотворен в некоторый момент времени, неявно предполагают, что Хаос и Творец существовали еще «до того», а за границами мира, как бы далеко они ни располагались, всегда есть что-то еще, по крайней мере пустота. Принципиально иная концепция возникла в 20-х годах 20-го века. Основываясь на созданной незадолго до того общей теории относительности, ленинградский физик А.А. Фридман пришел к выводу, что в силу каких-то пока не ясных причин Вселенная внезапно возникла в очень малом, практически точечном объеме чудовищной плотности и температуры (так называемой сингулярности) и стала стремительно расширяться. Размеры «зародыша» Вселенной сопоставляют с размерами атомного ядра, т.е. 10-15 м.Ученик Фридмана Дж. Гамов рассчитал в конце сороковых годов модель горячей взрывающейся Вселенной, положив начало так называемой теории "Большого взрыва". Широкое распростра-нение и внедрение эта теория получила с середины 1960-х годов.

Большой взрыв – понятие из теории происхождения Вселенной, согласно которому Вселенная образовалась в результате грандиозного взрыва чего-то невероятно маленького и горячего и с тех пор все время расширяется.

Спрашивать о том, что было до «Большого Взрыва» и что находится за пределами стремительно расширяющегося мира, бессмысленно. Вселенная, согласно теории Большого Взрыва ограничена в пространстве и времени, по крайней мере, со стороны прошлого. Такая трудно совместимая с нашей интуитивной логикой картина следовала из полученных Фридманом формул. Вскоре, однако, астрономические наблюдения подтвердили факт расширения окружающего нас пространства: американский астроном Э. Хаббл измерил его скорость. Экстраполируя обратно к исходному нулевому объему, можно было оценить время жизни Вселенной — что-то около 15–20 миллиардов лет. До самого взрыва не существовало ни вещества, ни времени, ни пространства. События в первую секунду протекали стремительно. Вначале образовалось излучение (фотоны), затем частицы вещества - кварки и антикварки. В течение той же секунды из кварков и антикварков образовались протоны, антипротоны и нейтроны. Как известно, антипротон отличается от протона противоположным зарядом, а в остальном, эти частицы являются почти тождественными. При столкновении протона и антипротона происходит реакция аннигиляции, в ходе которых обе частицы исчезают, превращаясь в излучение (фотоны). Также возможны ядерные реакции обратные реакции аннигиляции, когда из фотонов образуется пара протон-антипротон. Сказанное о протоне и антипротоне верно также и для любой другой пары частицы и соответствующей античастицы.

После образования протонов, антипротонов и нейтронов стали частыми реакции аннигиляции, так как вещество новорожденной Вселенной было очень плотно, частицы постоянно между собою сталкивались.

К исходу первой секунды, когда температура Вселенной упала до 10 млрд. градусов, образовались и некоторые другие элементарные частицы, в том числе электрон и парная ему античастица - позитрон. К тому же временному рубежу большая часть частиц аннигилировала.

Аннигиляция– превращение частицы и античастицы при столкновении в другие частицы.

Так вышло, что частиц вещества было на ничтожную долю процента больше, чем частиц антивещества. Этот факт до сих пор нуждается в объяснении. Но, так или иначе, наша Вселенная состоит из вещества, а не из антивещества.

К третьей минуте из четверти всех протонов и нейтронов образовались ядра гелия. Через несколько сот тысяч лет расширяющаяся Вселенная остыла настолько, что ядра гелия и протоны смогли удерживать возле себя электроны. Так образовались атомы гелия и водорода. Вселенная стала намного «просторнее». Излучение, не сдерживаемое больше свободными электронами, смогло распространяться на значительные расстояния. Мы до сих пор можем на Земле "слышать" отголоски того излучения, предсказанного Г. Гамовым. Это излучение принято называть реликтовым. Его обнаружение и существование подтверждают теорию Большого взрыва. Излучение является микроволновым.

При расширении в общем однородной Вселенной в тех или иных ее местах образовывались случайные сгущения. Но именно эти "случайности" стали зачатками больших уплотнений и центрами концентрации вещества. Так во Вселенной образовались области, где вещество собиралось, и области, где его почти не было. Под воздействием гравитации появившиеся уплотнения росли. В местах таких уплотнений стали образовываться галактики, скопления и сверхскопления галактик.

В последнюю четверть двадцатого века теория Большого Взрыва стала практически общепринятой в космологии.

Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Звезда начинает свою жизнь как холодное разрежённое облако межзвёздного газа, сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает 15-20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной — в ней доминируют реакции водородного цикла. В таком состоянии он пребывает бо́льшую часть своей жизни. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на его периферии.

В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается — звезда становится красным гигантом. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы (гелий — в углерод, углерод — в кислород, кислород — в кремний, и наконец — кремний в железо).

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой — многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которой находится на определённой стадии жизненного цикла.

За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники.

 


<== предыдущая страница | следующая страница ==>
Токамак | Образование планетных систем. Солнечная система

Дата добавления: 2014-02-26; просмотров: 631; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.005 сек.