Главная страница Случайная лекция Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика Мы поможем в написании ваших работ! |
Стабилизатор напряжения на микросхеме КР142ЕН19 с защитойГлава 2. Схемы простейших устройств защиты и зарядки ЗАЩИТА надо связать гл.2 со схемой медленного пуска
Стабилизатор напряжения должен быть надежен, чтобы не вывести из строя дорогостоящую нагрузку. Предлагаемое устройство имеет многократную защиту неблагоприятных ситуаций, таких как перегрузка по току, превышение напряжения на выходе, самовозбуждение[27]. В [27] проводится сравнение стабилизаторов напряжения, в которых сочетание надежного запуска стабилизатора под нагрузкой и надежной защиты получено за счет применения отдельного пускового узла на мощном транзисторе. Однако почти такое же сочетание надежной защиты и запуска может быть достигнуто более экономно, без применения дополнительного мощного транзистора, если оснастить стабилизатор импульсной защитой. Если выходной ток стабилизатора некоторое время превышает порог срабатывания защиты, стабилизатор выключается на несколько секунд для охлаждения регулирующего транзистора, потом включается и отключается снова, пока не будет устранена авария в нагрузке. Поскольку регулирующий транзистор в таком режиме большую часть времени закрыт, рассеиваемая им средняя мощность даже при коротком замыкании выхода не больше, чем в штатном режиме. В предлагаемом стабилизаторе применен узел импульсной защиты на герконовом реле, включенном в сильноточную цепь. Такой узел содержит мало дополнительных деталей, почти не уменьшает КПД стабилизатора, а главное, ток срабатывания герконовой защиты очень слабо зависит от температуры. Коэффициент стабилизации устройства превышает 400. Минимальное падение напряжения между входом и выходом - 0,5 В. Схема стабилизатора показана на рис. 110 Рис. 110 С1, С4 – 4700 мкФ × 63 В R4(0,25Вт) – 360 Ом R12 – 3 КОм С2 – 68 мкФ × 3 В R5(0,125Вт) – 100 КОм R13(0,5Вт) – 4,7 КОм С3 – 3,6 мкФ R7(0,125Вт) – 10 КОм R14(0,5Вт) – 360 Ом С4 – 0,01 мкФ R8(5Вт) – 100 Ом DA1 – КР142ЕН19 R1(0,25Вт) – 56 Ом R9(0,25Вт) – 510 Ом VT1 – КТ819БМ R2(0,125Вт) – 3 МОм R10(0,125Вт) – 2 Ом VT2 – КТ815Б R3(0,25Вт), R6(0,25Вт) – 3 КОм R11(0,25Вт) – 20 КОм VD1 – КС156А Основной элемент стабилизатора – микросхема КР142ЕН19 (DA1). Если напряжение на управляющем входе (выв.1) микросхемы относительно катода (выв. 2) превысит порог ее открывания (2,5 В), ток анода возрастает с крутизной примерно 2 мА/мВ. Напряжение на аноде открытой микросхемы, определяемое ее внутренним устройством, – не менее 2,5 В. Эта микросхема имеет особенность: если напряжение на входе окажется больше, чем надо для ее полного открывания, она может выключиться. При этом она перестает управлять стабилизатором, в результате чего на его выходе может появиться входное напряжение. Перегрузка входа микросхемы может произойти из-за броска выходного напряжения, который возникает при отключении нагрузки от работающего стабилизатора. При этом ток, поступавший в нагрузку до ее отключения, начинает заряжать конденсатор, установленный на выходе стабилизатора. Это приводит к увеличению выходного напряжения, пока прошедшим через стабилизатор сигналом ошибки не будет закрыт регулирующий транзистор. Очевидно, выброс напряжения будет тем меньше, чем больше емкость конденсатора на выходе устройства и чем быстрее проходит через стабилизатор сигнал ошибки. Эксперименты с отключением нагрузки показали, что емкости не менее 1000 мкФ на каждый ампер выходного тока вполне достаточно, чтобы отключения микросхемы в описываемом стабилизаторе возникнуть не могло. При повторении устройства следует воздерживаться от изменений, приводящих к уменьшению быстродействия, например, от применения низкочастотных транзисторов. Особенно опасно искусственно уменьшать быстродействие добавлением интегрирующих RC-звеньев в тракт прохождения сигнала ошибки с целью борьбы с генерацией. Поскольку часть выходного напряжения подана с движка резистора регулировки выходного напряжения R12 на вход управления микросхемы, увеличение напряжения между выходными выводами стабилизатора приводит к увеличению напряжения между входом управления микросхемы и ее катодом, что приводит к открыванию микросхемы. Ее выходной сигнал закрывает транзистор VT3, включенный по схеме с общим затвором, а затем и составной регулирующий транзистор VT2VT1, включенный в минусовый провод стабилизатора, что приводит к уменьшению тока через него. Если закрыта микросхема, транзистор VT3 должен быть открыт, ток его канала должен быть в пределах 4...10 мА. Такой режим получается, если на затвор подано напряжение около 5 В относительно общего плюсового провода. Оказалось, что подача на затвор части входного напряжения с пульсациями приводит к появлению пульсаций на выходе стабилизатора с амплитудой около 1 мВ. Поэтому напряжение на затворе транзистора VT3 стабилизировано относительно общего провода стабилитроном VD1, а затем еще и отфильтровано цепями R2C3, R5C4. Применение полевого транзистора позволило существенно уменьшить ток через фильтры, а следовательно, и их габариты. Резистор R7 предотвращает самовозбуждение. Без него ступень на транзисторе VT3 может самовозбудиться на частоте около 20 МГц. Описываемый стабилизатор имеет три степени защиты от аварий как в нагрузке, так и в самом стабилизаторе. Быстрая защита от кратковременных перегрузок обеспечена резистором R8. При существенном, примерно в два раза, превышении током нагрузки заданного максимума в 2 А падение напряжения на резисторе R8 увеличивается до уровня входного напряжения, транзистор VT2 вследствие этого насыщается и перестает усиливать ток, что приводит к ограничению тока нагрузки. От более продолжительных аварий стабилизатор защищен импульсной защитой на герконовом реле К1. Если ток нагрузки превышает ток срабатывания реле (2 А), геркон замыкается и конденсатор СЗ быстро разряжается через резистор R1. При этом начинается также разрядка конденсатора С4 через резистор R5. Но этот процесс протекает значительно медленнее из-за сравнительно большого сопротивления резистора R5. Когда падение напряжения на конденсаторе С4 уменьшится примерно до 1 В, транзистор VT3 закроется, выключая тем самым стабилизатор. Задержка отключения стабилизатора цепью R5C4 введена для того, чтобы конденсатор СЗ успел до момента размыкания геркона К1.1 разрядиться практически полностью. После размыкания геркона начинается медленная зарядка конденсатора СЗ через резистор R2. Это приводит к постепенному открыванию транзистора VT3 и запуску стабилизатора. Аналогично происходит и запуск стабилизатора при включении питания. Если от этого стабилизатора питать УМЗЧ, при его включении не будет щелчка в акустических системах. Описываемый стабилизатор, как и любое устройство с глубокой обратной связью, может быть склонен к генерации. При макетировании устройства генерация наблюдалась в виде импульсов на выходе стабилизатора с амплитудой около 5мВ и частотой около 100 кГц. Оказалось, что на склонность стабилизатора к генерации больше всего влияет качество конденсатора С5. Понять, почему это происходит, помогают следующие рассуждения. Допустим, на выходе стабилизатора случайно изменилось напряжение на 1 мВ. Микросхема преобразует это напряжение в изменение выходного тока 2 мА. Регулирующие транзисторы усилят его примерно в 500 раз, что в результате приведет к изменению тока через стабилизатор и конденсатор С5 на 1 А. Это изменение тока вызовет падение напряжения на эквивалентном последовательном сопротивлении (ЭПС) конденсатора, которое пойдет по цепи обратной связи "по второму кругу". Если это падение напряжения превысит 1 мВ, может возникнуть генерация. Очевидно, устойчивость стабилизатора может обеспечить конденсатор С5 с ЭПС менее 0,001 Ом. Чтобы сделать выбор, были проведены измерения ЭПС конденсаторов различных серий. На конденсатор через резистор подавалось однополярное напряжение с частотой 100 кГц и размахом тока 1 А. ЭПС вычислялось по напряжению на конденсаторе, измеренному осциллографом. Оказалось, что для конденсаторов емкостью более 500 мкФ ЭПС на частоте Конденсатор С2 устраняет влияние индуктивности обмотки герконового реле на устойчивость стабилизатора. В стабилизатор может быть добавлена еще одна степень защиты – от перегревания регулирующего транзистора VT1. Для этого достаточно прижать к корпусу этого транзистора термореле с биметаллической пластиной, срабатывающее при температуре 60...70 °С. Замкнутые контакты термореле включают в разрыв цепи стока транзистора VT3. Перегревание транзистора VT1 вызовет размыкание контактов термореле, в результате чего транзистор VT1 будет закрыт до тех пор, пока не охладится. Транзистор КП507А (VT3) заменим близким по параметрам КП508А. Микросхему КР142ЕН19 (DA1) допустимо заменить на КР142ЕН19А или зарубежный аналог TL431. Конденсаторы СЗ, С4, используемые в узле защиты как времязадающие, должны быть с малой утечкой, например, из серий ФТ, К78, К71-4. От емкости конденсатора СЗ зависит период срабатывания импульсной защиты, а также длительность запуска стабилизатора. При указанных на схеме сопротивлении резистора R2 и емкости конденсатора СЗ этот период примерно равен 3 с. Существенно уменьшать его снижением емкости конденсатора СЗ не следует, так как при слишком быстром запуске ток зарядки конденсаторов, которые могут находиться в составе нагрузки, может превысить 2 А, что вызовет срабатывание защиты. Герконовое реле К1 -самодельное. На герконе КЭМ1 (или другом аналогичном) наматывают 15 витков обмоточного провода диаметром 0,4–0,7 мм. Затем уточняют число витков по срабатыванию геркона при токе нагрузки 2 А. Транзистор VT1 должен быть установлен на теплоотводе с площадью охлаждающей поверхности не менее 200 см2. При налаживании на вход подают напряжение с выхода лабораторного источника питания. Его максимальное значение не должно превышать 30 В (предельное напряжение анод–катод микросхемы DA1). Подбором резистора R14 устанавливают верхнюю границу регулировки выходного напряжения на 0,5... 1 В меньше входного напряжения. Резистор R8 подбирают так, чтобы падение напряжения на нем при токе нагрузки около 2 А было равно половине входного напряжения. Стабилизатор следуете осторожностью использовать в двуполярных источниках из-за его медленного запуска. Так как геркон импульсной защиты может замыкаться от сильной тряски, не рекомендуется применять предлагаемый стабилизатор в бортовых системах.
2.2. Транзисторная сборка в устройстве защиты Используя пороговые свойства мощных полевых транзисторов, можно собрать простое устройство защиты от превышения питающего напряжения без стабилитронов, компараторов и других пороговых элементов[28]. Такое устройство имеет малые габариты, поэтому его можно встраивать внутрь уже готовых приборов и изделий. Схема устройства защиты показана на рис. 111. Для уменьшения габаритов оно собрано на транзисторной сборке IRF7316, в состав которой входят два мощных полевых переключательных транзистора с p-каналом. Предельные значения параметров каждого из транзисторов: сопротивление открытого канала – 0,06 Ом, максимальный ток стока – около 4 А, максимальное напряжение исток-сток 30 В, затвор-исток 20 В, суммарная рассеиваемая мощность сборки – 1,3...2 Вт. На рис.428 обозначено: На рис. 111 указаны значения параметров элементов схемы: R1 – 100 кОм; R2 – 200 кОм – 0,125 Вт; R3 – 1 кОм – 0,125 Вт; R4 – 1 МОм; HL1 – АЛ307ГМ; VT1 – IRF7316; C1 – 0,01 мкФ. Устройство работает так. После подачи номинального входного напряжения основная его часть будет приложена между затвором и истоком транзистора VT1.2, поэтому он откроется и далее напряжение поступит на подключенную к выходу нагрузку. Если по каким-либо причинам входное напряжение увеличится сверх допустимого, то транзистор VT1.1 начнет открываться, напряжение на нем уменьшится, а транзистор VT1.2 закроется. В результате нагрузка будет отключена. Благодаря пороговым свойствам – высокой крутизне передаточной характеристики (около 7 А/В) – один транзистор VT1.1 успешно заменят источник образцового напряжения и компаратор. Ширина переходной зоны переключения мала (около 10 мВ). Но нестабильность входного напряжения может вызвать многократные переключения (дребезг) устройства. Для того чтобы его исключить, введена положительная обратная связь (ПОС) через резистор R4. Благодаря этому уменьшение выходного напряжения приводит к увеличению напряжения затвор-исток транзистора VT1.1 и он открывается еще сильнее, а VT1.2 закрывается и выходное напряжение еще больше уменьшается и т.д. Таким образом, устройство имеет два устойчивых состояния, а переключение между ними происходит скачком. При уменьшении входного напряжения процесс происходит в обратном порядке, но благодаря ПОС устройство имеет гистерезис, т.е. отключение нагрузки происходит при большем входном напряжении, чем включение. Гистерезис можно регулировать подбором резистора R4: чем больше его сопротивление, тем меньше гистерезис. Светодиод HL1 – индикатор состояния устройства: он светит, когда нагрузка отключена. При указанных на схеме номиналах (движок подстроечного резистора R1 в верхнем по схеме положении) и токе нагрузки 1 А получены следующие результаты. Падение напряжения устройстве – 40 мВ, напряжение отключения – 15 В, напряжение включения – 12,6 В. Конденсатор С1 обеспечивает устойчивость работы устройства и, кроме того, повышает его помехозащищенность, поскольку оно меньше реагирует на короткие импульсные помехи. Все детали размещены на печатной плате из односторонне фольгированного стеклотекстолита. В устройстве применимы аналогичные транзисторы в отдельных корпусах. Транзистор VT1.1 может быть заменен слаботочным, но с большой крутизной передаточной характеристики (не менее 1 А/В). Транзистор VT1.2 допустимо заменить другим, рассчитанным на максимальный ток нагрузки. Постоянные резисторы – P1 – 12, подстроечный – PVZ или аналогичный, конденсаторы K10-17 или аналогичные. Светодиод HL1 можно применить любой видимого спектра излучения с номинальным током 5...20 мА. Если индикация не нужна, светодиод HL1 заменяют перемычкой. В этом случае, если необходимо установить аналогичное устройство в минусовый провод питания, то следует применить транзисторы с n-каналом, например, сборку IRF7313. Налаживание сводится к установке напряжения отключения подстроечным резистором R1 и ширины зоны гистерезиса подбором резистора R4. Следует учитывать, что эти регулировки взаимосвязаны. Поскольку для открывания полевого транзистора необходимо напряжение затвор-исток более 3,5...4 В, то устройство будет нормально работать при напряжении питания больше 6...7 В. КОНЕЦ
Основные показатели стабилизирующих источников вторичного электропитания С.15-19 Любой источник Классификация источников вторичного электропитания С.20-21 Стабилизированные источники вторичного электропитания Общие сведения о выпрямителях С.22выпрямители являются неотъемлемой частью источников вторичного электропитания с.24характеристика основных схем выпрямителей схемы -рис С.29 Бестрансформаторные схемы выпрямителей Активно-емкостная нагрузка Рассмотрим влияние активно-емкостной нагрузки на примере работы однофазного мостового выпрямителя схемы -рисс.30-карандаш сглаживающие фильтры
Дата добавления: 2014-03-13; просмотров: 637; Нарушение авторских прав Мы поможем в написании ваших работ! |