Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Основы теории множеств

Читайте также:
  1. I ОСНОВЫ ГЕОЛОГИИ 1 Предмет геологии и ее значение
  2. II. Основы определения страхового тарифа.
  3. II. ОСНОВЫ СИСТЕМАТИКИ И ДИАГНОСТИКИ МИНЕРАЛОВ
  4. IV. В теории правового государства выделяются следующие элементы: принцип верховенства права, разделения власти на 3 ветви, независимости суда, конституционного статуса граждан.
  5. Аксиомы теории вероятностей
  6. Аксиомы теории вероятностей
  7. Билет № 9 (Основы)
  8. БИОХИМТИЧЕСКИЕ ОСНОВЫ СКОРОСТНО-СИЛОВЫХ КАЧЕСТВ СПОРТСМЕНОВ
  9. В теории и практике планирования могут также выделяться другие виды планирования, охватывающие как главные, так и второстепенные аспекты этого процесса.
  10. В элитарной теории демократии нельзя говорить о группах интересов как о субъекте ППР.

Основные понятия теории вероятностей

ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ И ИХ ПРИМЕНЕНИЕ В РАСЧЕТАХ НАДЕЖНОСТИ

ЛЕКЦИИ 3 - 4

Контрольные вопросы

 

1. Понятие отказа в теории надежности.

2. По каким признакам классифицируются отказы?

3. Приведите примеры отказов различных типов.

4. Повреждения и неисправности объектов.

5. Характеристика жизни объекта.

6. Потоки отказов элементов.

7. Какими свойствами обладают потоки отказов элементов?

8. Какие потоки называются простейшими?


 

 

Теория вероятностей - математическая наука, изучающая закономерности в случайных явлениях. Одним из основных понятий является понятие случайного события (в дальнейшем просто событие). Отказ – событие случайное.

Событием называется всякий факт (исход), который в результате опыта (испытания, эксперимента) может произойти или не произойти. Каждому из таких событий можно поставить в соответствие определенное число, называемое его вероятностью и являющееся мерой возможного совершения этого события.

Современное построение теории вероятностей основывается на аксиоматическом подходе и опирается на элементарные понятия теории множеств.

Множество – это любая совокупность объектов произвольной природы, каждый из которых называется элементом множества. Множества обозначаются по-разному: или одной большой буквой или перечислением его элементов, данным в фигурных скобках, или указанием (в тех же фигурных скобках) правила, по которому элемент относится к множеству. Например, конечное множество М натуральных чисел от 1 до 100 может быть записано в виде

 

М = {1, 2, …,100} = {i - целое; 1 i 100}.

 

Предположим, что производится некоторый опыт (эксперимент, испытание), результат которого заранее неизвестен, случаен. Тогда множество всех возможных исходов опыта представляет пространство элементарных событий, а каждый его элемент (один отдельный исход опыта) является элементарным событием. Любой набор элементарных событий (любое их сочетание) считается подмножеством (частью) множества и является случайным событием, т. е. любое событие А – это подмножество множества : А .

В общем случае, если множество содержит n элементов, то в нем можно выделить 2n подмножеств (событий).

Рассматривая событие (ведь каждое множество есть свое собственное подмножество), можно отметить, что оно является достоверным событием, т. е. осуществляется при любом опыте. Пустое множество как событие является невозможным, т. е. при любом опыте заведомо не может произойти.

Совместные (несовместные) события – такие события, появление одного из которых не исключает (исключает) возможности появления другого.

Зависимые (независимые) события – такие события, появление одного из которых влияет (не влияет) на появление другого события.

Противоположное событие относительно некоторого выбранного события А – событие, состоящее в не появлении этого выбранного события (обозначается ).

Полная группа событий – такая совокупность событий, при которой в результате опыта должно произойти хотя бы одно из событий этой совокупности. Очевидно, что события А и составляют полную группу событий.

Одна из причин применения теории множеств в теории вероятностей заключается в том, что для множеств определены важные преобразования, которые имеют простое геометрическое представление и облегчающее понимание смысла этих преобразований. Оно носит название диаграммы Эйлера-Венна, и на ней пространство изображается в виде прямоугольника, а различные множества – в виде плоских фигур, ограниченных замкнутыми линиями. Пример диаграммы, иллюстрирующей включение множеств C B А, приведен на рис. 3.1.

 

 

 

Рис. 3.1

 

Видно, что B является подмножеством А, а C – подмножеством B (и одновременно подмножеством А).

 


<== предыдущая страница | следующая страница ==>
ПОТОКИ ОТКАЗОВ ЭЛЕМЕНТОВ И ИХ СВОЙСТВА | 

Дата добавления: 2014-02-26; просмотров: 376; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.003 сек.