Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Повышение механических свойств УМЗ материалов, полученных РКУ прессованием

Читайте также:
  1. V. АКУСТИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД И МАССИВОВ. ОСНОВНЫЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА АКУСТИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД
  2. А). Вопрос об «асимметрии правил допустимости доказательств» (или возможности использования доказательств, полученных с нарушением закона, стороной защиты).
  3. Акустические свойства горных пород
  4. Алгоритмы проверки свойств последовательности
  5. АНАЛИЗ СВОЙСТВ ТОВАРА
  6. Биологические свойства крови
  7. Боевые свойства гранат
  8. Бронза – ее свойства и области использования в художественных изделиях.
  9. Бронзы – состав, свойства.
  10. Буксировка механических транспортных средств

Как свидетельствуют недавние исследования, типично наноструктурные материалы с размером зерен 100 нм или меньше имеет высокую твердость, но проявляют низкую пластичность во время механических испытаний. В этой связи, большой интерес представляют недавние открытия, демонстрирующие как чрезвычайно высокую прочность, так и пластичность некоторых УM3 материалов, полученных методами интенсивной пластической деформации. Такие ИПД материалы, полученные измельчением микроструктуры в массивных заготовках, являются полностью плотными, и их большие геометрические размеры позволяют проводить тщательные механические испытания.

В одном из исследований чистая Сu (99,996%) была подвергнута РКУ прессованию при комнатной температуре по маршруту ВС с вращением на 90° по часовой стрелке вдоль оси заготовки между последовательными проходами (всего 16 проходов).

Исходная крупнокристаллическая Сu с размером зерен около 30 микрон имела низкий предел текучести, но обладала значительным деформационным упрочнением и большим удлинением до разрушения (пластичностью). Такое поведение характерно для крупнокристаллических металлов. Удлинение до разрушения является количественной характеристикой пластичности и определяется предельной деформацией, при которой образец разрушается. Холодная прокатка меди на 60%, значительно, увеличивает прочность, но и существенно снижает пластичность, что типично для механического поведения металлов, подвергнутых пластической деформации.

Эта тенденция характерна и для Сu после РКУ прессования с двумя проходами. Тем не менее, дальнейшее прессование меди с числом проходов до 16 одновременно увеличило как прочность, так и пластичность. Кроме того, увеличение пластичности является более значительным, чем увеличение прочности. Ранее такие зависимости не наблюдались, и полученные результаты меняют известные представления о механических свойствах металлов, подвергнутых пластической деформации.

Интересно, что подобные закономерности были обнаружены в Ti и некоторых других металлах, которые были подвергнуты ИПД кручением и испытаны на растяжение. В Ti увеличение прочности и пластичности наблюдалось после интенсивной деформации кручением и кратковременных отжигов при температуре, ниже 300 °С . Как показали исследования с использованием высокоразрешающей электронной микроскопии, эта обработка привела к изменению структуры границ зерен, связанному с перераспределением дислокации. Хотя общая интенсивность дислокации снижается при низкотемпературном отжиге после интенсивной деформации, локальная плотность дислокации у границ зерен может расти и, таким образом, увеличивать их неравновесность.

Необычное механическое поведение, обнаруженное в некоторых металлах, подвергнутых ИПД, свидетельствует о принципиальных изменениях механизма деформации после того, как в них произошло формирование УM3 структуры в результате обработки.

Как известно, перемещение дислокации и двойникование являются основными механизмами деформации для крупнокристаллических металлов. В ультрамелкозернистых металлах происходит затруднение зарождения и перемещения дислокации, что приводит к увеличению прочности. В то же время, наличие ультрамелких зерен может способствовать другим деформационным механизмам, например, таким, как зернограничное проскальзывание и вращение зерен, и, следовательно, повышать пластичность. Мы экспериментально наблюдали значительное зернограничное проскальзывание в ультрамелкозернистой меди, деформированной при комнатной температуре. Повышенная чувствительность к скорости деформации, которая наблюдалась при этом, также указывает на активное зернограничное проскальзывание.

Однако возникает вопрос - почему в ИПД материалах зернограничное проскальзывание может происходить при сравнительно низких температурах? Зернограничное проскальзывание является диффузионным процессом и обычно развивается при повышенных температурах. Здесь может быть предложено следующее объяснение, связанное со свойствами структуры границ зерен в наноструктурных ИПД материалах.

В середине 1990-х годов было высказано предположение, что в зависимости от условий интенсивной деформации, получаемые УМЗ материалы могут иметь очень неравновесные границы зерен. Неравновесные границы зерен - это границы с большеугловыми разориентировками, имеющие высокую плотность внесенных дислокаций и, как результат, избыточную энергию и дапьнодействующие напряжения. Последующие наблюдения с использованием высокоразрешающего ПЭМ дали прямые доказательства формирования таких неравновесных границ зерен в ИПД металлах. Недавние исследования также свидетельствуют о значительном росте коэффициента диффузии (на два или три порядка) в металлах, полученных методами ИПД, что может быть связано с неравновесностью границ зерен. В этой связи можно полагать, что наличие неравновесных границ в УМЗ металлах способствует развитию зернограничного проскальзывания, и возможность его наблюдения появляется даже при комнатной температуре. Интересно, что ускорение зернограничного проскальзывания вдоль неравновесных границ зерен было отмечено ранее в модельных экспериментах на бикристаллах.

Отсутствие существенного деформационного упрочнения является еще одним интересным свойством, выявленным во время механических испытаний металлов, полученных методами ИПД. Из механики деформации растяжением известно, что проявление стабильного течения и, следовательно, высокой пластичности тесно связано с деформационным упрочнением. Однако, полученные нами экспериментальные данные позволяют полагать, что высокая пластичность УМЗ металлов не связана со значительным деформационным упрочнением. Недавно подобное поведение было обнаружено при растяжении наноструктурной Сu, где авторы заключили, что критерии стабильности требуют пересмотра при анализе характера деформации УМЗ материалов. В то же время, данные настоящей работы свидетельствуют, что деформация исследуемых ИПД материалов характеризуется повышенной чувствительностью напряжения течения т к скорости деформации. Известно, что именно высокая чувствительность напряжения течения к скорости деформации обуславливает сверхпластичность материалов. Очевидно, что при растяжении УМЗ материалов повышенное значение т также способствует увеличению удлинения до разрушения. Увеличение параметра m, в свою очередь, может быть результатом развития зернограничного проскальзывания. Этот факт также хорошо известен из экспериментов по сверхпластичности.

Таким образом, при использовании РКУ прессования существует возможность принципиального изменения свойств металлов и сплавов при формировании в них ультрамелкозернистых структур, что позволяет реализовать сочетание высокой прочности и пластичности. Исследования такой необычной прочности и пластичности наноструктурных материалов имеют весьма важное как фундаментальное, так и практическое значение. С фундаментальной точки зрения, эти исследования интересны для выяснения новых механизмов деформации. С практической стороны, создание наноматериалов с высокой прочностью и пластичностью может резко повысить их усталостную прочность, ударную вязкость, снизить температуру хрупко-вязкого перехода. Как известно, именно усталость, более других факторов, часто снижает срок службы и, следовательно, область применения многих перспективных материалов.


<== предыдущая страница | следующая страница ==>
Исследование и развитие метода РКУ прессования | Изготовление штамповок горячим выдавливанием на прессах с подвижным контейнером

Дата добавления: 2014-05-20; просмотров: 312; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.004 сек.