Главная страница Случайная лекция Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика Мы поможем в написании ваших работ! |
Условия
Температура. Этот фактор‑условие наиболее важный и сложный по «многоканальности» воздействия на организмы. Температура изменяется в связи с географической широтой, высотой над уровнем моря и долготой (расстоянием от океана, которое определяет степень континентальности климата), в сезонными и суточными циклами. Кроме того, на нее влияют микроклиматические особенности экотопа: разная степень прогревания склонов разной экспозиции, стекание горного холодного воздуха в долины, а в водных экосистемах – глубина. В глубоких слоях водоема температура более низкая и стабильная, а поверхностные воды в теплое время года прогреваются. Климатологи исследовали вклад каждого из этих факторов в формирование температурного режима. Так выяснено, что самые высокие температуры отмечаются не на экваторе, а в средних широтах (при высокой континентальности), где с подъемом на каждые 100 м высоты над уровнем моря средняя годовая температура падает на 0,5–1°C. С увеличением глубины водоема колебания температуры в суточных и разногодичных циклах смягчаются и т.д. На температуру воды влияет и степень перемешивания разных слоев: если его нет, то различия между теплыми приповерхностными и холодными глубинными водами будут велики, при перемешивании они сглаживаются. Экологов интересуют в первую очередь не чисто физические параметры температурного режима, а их экологическое (физиологическое) влияние на различные организмы, как эктотермные (холоднокровные), так и эндотермные (теплокровные, см. 4.4.1). Для эктотермных организмов большое значение имеет «физиологическое время», измеряемое в «градусо‑днях» – произведении средней температуры на число дней, которые характеризовались превышением «порога развития» (температуры, начиная с которой организм оживает). Яйца кузнечиков начинают развиваться после того, как средняя дневная температура превысит 16°C. Если температура будет на уровне 20°C, то развитие потребует 17,5 суток, а если она поднимется до 30°C – сократится до 5 суток. Разумеется, если температура превысит верхний порог, при котором возможно существование того или иного организма, то он погибнет. Для оценки скорости развития микроорганизмов возможно использование «градусо‑часов», о чем знает любая хозяйка, имеющая дело с дрожжевыми грибами. При более высокой температуре они размножаются более интенсивно, и потому тесто или квас будут готовы быстрее, чем при низкой температуре. Температура влияет и на интенсивность размножения молочнокислых бактерий: молоко, подолгу сохраняющее свежесть в холодильнике, в теплом помещении скисает в течение нескольких часов. Принцип определения «градусо‑дней» лежит в основе используемого в сельском хозяйстве показателя «сумма положительных температур за период со средней дневной температурой выше 10°C» (для холодостойких крестоцветных, например рапса или редьки – 5°C). Этот показатель является важнейшей характеристикой климата, по которому определяется возможность возделывания той или иной сельскохозяйственной культуры. В таблицах 1 и 2 показаны значения сумм положительных температур для некоторых наиболее важных в сельскохозяйственном отношении районов России и потребность в этом параметре климата основных сельскохозяйственных культур.
Таблица 1 Агроклиматические условия некоторых районов РФ
Таблица 2 Минимально необходимая сумма положительных температур (за период с температурой выше 10°С) для основных сельскохозяйственных культур в средней полосе РФ (по Кирюшину, 1996) Примечание: указан диапазон при возделывании разных сортов (ранне‑, средне– и позднеспелых).
Температурные пределы, т.е. самые высокие и самые низкие температуры, которые могут выносить разные организмы в активном состоянии, различны. Кроме того, они зависят от влажности воздуха. Так растения во влажной атмосфере легче переносят стресс высоких температур. Влияние низких температур тем более губительно, чем оно более продолжительно. В состоянии покоя организм наиболее устойчив как к низким, так и к высоким температурам: сухие пшеничные зерна сохраняют всхожесть при прогревании до температуры 90°C в течение 10 минут, но если их замочить – гибнут при температуре 60°C. Чемпион по переживанию низких температур – лиственница: переносит морозы именно за счет способности переходить в состояние покоя. Температура – важнейший фактор, влияющий на метаболизм организмов и определяющий их распространение. Однако для различных видов важными оказываются разные составляющие температурного режима: среднегодовая температура, средняя температура летних месяцев, минимальная температура в разные сезоны года и т.д. Кроме того, нередко температура влияет на организмы косвенно, например, при повышении температуры воды в ней снижается содержание кислорода. Относительная влажность воздуха. Этот фактор‑условие обычно тесно взаимодействует с температурой, и риск обезвоживания растений, насекомых или других животных при высоких температурах тем выше, чем ниже влажность воздуха. Разные виды растений и животных имеют разные возможности противодействовать потерям воды, в частности растения, приспособленные к стрессу засухи (ксерофиты), удерживают воду даже при низкой влажности воздуха (см. 4.4.3). Влажность воздуха может меняться в разных частях экосистемы: быть достаточно высокой внутри травостоя злаковника и низкой – над его поверхностью. При высокой влажности и очень сухих почвах этот фактор может становиться ресурсом. Выпадение росы, к примеру, играет роль в обеспечении влагой пустынных растений, в частности знаменитое растение пустыни Намиб вельвичия (Welwitchia mirabilis) использует в качестве ресурса воды только росу туманов (дожди там вообще не выпадают). Обитающие в этой пустыне жуки‑чернотелки также используют воду, оседающую из росы на его холодном теле. рН воды и почвы. Концентрация ионов водорода в воде влияет на организмы непосредственно (при рН ниже 3 происходит повреждение протоплазмы клеток корня у большинства сосудистых растений) и косвенно, определяя концентрацию ионов питательных элементов и токсичных веществ. При этом косвенное влияние рН сильнее: при кислой реакции среды почва насыщается токсичными подвижными соединениями алюминия и железа, в щелочных почвах резко падает доступность фосфатов и многих микроэлементов. При понижении рН (например,в результате выпадения кислотных дождей) нарушаются метаболические процессы в организмах: осморегуляция, работа ферментов и газообмен через дыхательные поверхности. Кроме того, повышается концентрация токсичных элементов (в первую очередь алюминия) в результате катионного обмена с донными осадками. Кроме того, снижается количество пищевых ресурсов для животных обитателей экосистем (число видов растений и животных). При подкислении воды в озерах резко замедляется рост диатомовых водорослей. Подзолистые и серые лесные почвы имеют слабокислую реакцию в результате выщелачивания кальция разлагающейся подстилкой. По этой причине кислотные дожди в этой зоне особенно губительны – снижают плодородие почвы и ограничивают возможности возделывания культур, для которых оптимальна нормальная реакция почвенного раствора (пшеницы, кукурузы и др.). В то же время эти дожди наносят сравнительно малый ущерб черноземам степной зоны, которые имеют слабощелочную реакцию и хорошо нейтрализуют выпадающие кислоты. Более того, содержащиеся в кислых дождях оксиды азота могут быть азотным удобрением и повышать урожай. Соленость воды. Большая часть воды, которая имеется на земле – соленая морская. В среднем в морской воде содержится около 3,5% солей, причем, 2,7% – это хлористый натрий, а остальные 0,8% – соли магния, кальция и калия. Из катионов, кроме хлора, в составе морских солей принимают участие ионы сульфата, соды и брома. Для большинства обитателей моря соленость – чрезвычайно важный фактор. Многие из них изотоничны: концентрация солей во внутренней среде организма примерно такая же, как и в морской воде. Поэтому у них нет проблем с удержанием воды, которая при гипотоничности (т.е. низкой концентрации солей в организме) могла бы быть «вытянута» из организмов под действием осмотических сил. Однако среди обитателей моря много и гипотоничных организмов, например морских рыб, которые затрачивают энергию на удержание в теле воды. Особую экологическую группу составляют проходные рыбы, совершающие нерестовые миграции из морей в реки (осетровые, лососевые, сельдевые) и из рек в моря (некоторые бычки, речной угорь, тропические виды сомов). Эти виды адаптированы к перепадам солености воды и перед миграциями накапливают резервные вещества (главным образом жир), которые необходимы им для перестройки метаболизма. Такие же проблемы характерны и для растений, произрастающих на засоленных почвах. В этих условиях растут только виды, адаптированные к высоким концентрациям солей в почвенном растворе (галофиты), другие растения – погибают. Разные ионы по‑разному влияют на организмы. Так для растений наименее токсичен сульфат‑ион и наиболее токсичен ион гидрокарбоната натрия – НСО3 Ионы хлора имеют среднюю токсичность. По этой причине, если засоление почвы оценивается только по общему содержанию солей, т.е. сухому остатку, который получается после выпаривания водной вытяжки из почвы, и не учитывается состав солей, которые обусловили засоление, экологическая оценка этого фактора будет неполной. Один сульфат‑ион в пять раз менее токсичен, чем ион хлора, и в десять раз – чем ион НСО3 . Засоление почв характерно для лесостепной, степной и пустынной зон и меняется с севера на юг по ряду: сульфатное – сульфатно‑хлоридное – хлоридно‑содовое. В любой зоне возможны все варианты уровня засоления – от слабого (содержание солей составляет доли процентов) до солончака (несколько процентов солей от общего веса почвы), хотя площадь солончаков возрастает с севера на юг. Большинство сельскохозяйственных растений неустойчиво к засолению, что сдерживает возможность возделывания их на почвах даже со слабым засолением. Исключение составляет лишь сахарная свекла, предок которой – свекла морская (Beta maritima) – связан с засоленными почвами Средиземноморья. Поэтому свеклу можно возделывать на слабо солончаковатых почвах, что даже повышает содержание сахара в ее корнях. На знании этой особенности сахарной свеклы основан прием повышения ее урожайности и одновременного уничтожения сорняков внесением невысоких доз поваренной соли. (Однако этот прием опасен для остальных культур севооборота, в котором возделывается свекла: для них повышение содержания натрия в почвенном растворе нежелательно.) Течение. Этот прямодействующий физический фактор играет большую роль при определении видового состава растений и животных, в первую очередь в речных экосистемах. В быстротекущих реках состав биоты представлен организмами, участвующими в обрастании камней (т.е. перифитона), прежде всего нитчатыми водорослями, а также разнообразными беспозвоночными, обитающими под камнями. В медленно текущих реках формируются богатые видами высокопродуктивные экосистемы с участием разнообразных растений‑макрофитов. Экосистемы прибрежий таких рек по составу биоты напоминают озера, в которых вообще отсутствует течение. Течение влияет на состав водных экосистем также как косвенный фактор через концентрацию в воде кислорода, являющегося важным ресурсом. Чем быстрее течение воды, тем содержание в ней кислорода выше. Не меньшую роль, чем в пресноводных экосистемах, течение играет в жизни морских экосистем. Морские течения переносят теплые и холодные массы воды и тем самым посредством температуры влияют на условия жизни в море. Теплую воду несут Гольфстрим и Северо‑Атлантическое течение, холодную – Калифорнийское течение (по этой причине на побережье Калифорнии обычны туманы). Кроме поверхностных ветровых течений, существуют и глубоководные перемещения водных масс. По этой причине в морских экосистемах, как правило, не бывает недостатка кислорода, что достаточно обычно для озерных экосистем. В жизни водных экосистем большую роль играет также вертикальное перемещение водных масс. В пресноводных водоемах перемешивание выравнивает градиент температуры от поверхности до глубоководий и повышает содержание кислорода во всей водной толще. Особую же роль явление перемешивания вод играет в океанах, где происходит подъем больших масс холодной и обогащенной элементами питания воды к поверхности, что называется апвеллингом. Морские течения, кроме того, являются «машинами климата», т.е. косвенным фактором, который через изменение температуры и влажности влияет на наземные экосистемы. Загрязняющие вещества. Повышение концентрации загрязняющих веществ в воде, атмосфере и почве во многом связано с хозяйственной деятельностью человека, и потому характер загрязнения зависит от типа производства (хотя возможно загрязнение атмосферы сернистым газом и по естественным причинам, например при извержении вулканов). Основными источниками веществ, загрязняющих атмосферу, являются предприятия топливно‑энергетического комплекса и транспорт, а загрязняющих воду – предприятия химической промышленности (табл. 3). Загрязняющие атмосферу оксиды серы и азота с кислотными дождями попадают в водные и наземные экосистемы. Предприятия горнодобывающей и металлургической промышленности сбрасывают в водоемы соединения меди, свинца, цинка и других тяжелых металлов. Загрязнение почв тяжелыми металлами (в первую очередь свинцом) происходит при использовании транспортом этилированного бензина.
Таблица 3 Десять основных веществ, загрязняющих биосферу
Большую опасность для водных экосистем представляет поступление в них биогенов – фосфатов, соединений азота и др., которые вызывают эвтрофикацию экосистем (см. 12.7). Если в экосистему попадают высокотоксичные элементы, такие как ртуть, то происходит подрыв ее биологической продуктивности и гибель большей части организмов. Устойчивость организмов разных видов к действию загрязняющих веществ различна, что позволяет по составу биоты оценивать уровень загрязнения экосистемы (использовать методы биологической индикации). В популяциях многих видов могут быть устойчивые к загрязняющим веществам экотипы, которые активизируются при их появлении (см. 4.2).
Контрольные вопросы:
1. Какие факторы влияют на температуру в наземных и водных экосистемах? 2. Расскажите о понятии «градусо‑дни». 3. Какую роль играет показатель «сумма положительных температур» для экологически ориентированного сельского хозяйства? 4. От каких факторов зависят температурные пределы выносливости организмов? 5. Приведите примеры косвенного влияния температуры на организмы. 6. В каких условиях влажность воздуха может стать ресурсом? 7. Охарактеризуйте рН среды как прямой и косвенный фактор. 8. Почему соленость воды не опасна для морских организмов? 9. Какой из ионов, вызывающих засоление почвы, наиболее токсичен? 10. Какой вид сельскохозяйственных растений, выращиваемых в Средней полосе, устойчив к засолению почвы и почему? 11. Какую роль играет течение в жизни пресноводных экосистем? 12. Расскажите о влиянии течений на экосистемы океана. 13. Перечислите основные вещества, загрязняющие атмосферу.
Дата добавления: 2014-09-10; просмотров: 382; Нарушение авторских прав Мы поможем в написании ваших работ! |