Главная страница Случайная лекция Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика Мы поможем в написании ваших работ! |
Глава IV. Стаз
Это – местная остановка кровотока в микроциркуляторном русле. В расширенных капиллярах кроь останавливается, эритроциты сгущены, гемолиза и свертывания нет. Процесс обратим. Вижы: - ишемический стаз – нет притока крови из артерии, - застойный стаз - нет оттока крови через вены, - истинный капиллярный стаз – поражение, воспаление капилляров (влияние высоких и низких температур, высыхание капилляров, кислот, кротонового масла, скипидара, множество при сыпном тифе). Механизм истинного капиллярного стаза. Непосредственная причина – внутрикапиллярная агрегация эритроцитов, ведущая к остановке кровотока – масштабы разные. Факторы вызывающие: -химические факторы – внешнее повреждение капилляров – увеличение в крови альбуминов и фибриногена – усиленная агрегация эритроцитов, - химические факторы –внутри капилляров повреждение эритроцитов, ведущее к агрегации. -влияние нервных импульсов, спазм артериол способствуют стазу, гистамин снижает агрегацию эритроцитов. Стойкие стазы могут привести некрозу, степенью опасности какой орган . Механизм ответа острой фазы Любое повреждение, вызывает реакции, которые обозначены как «ответ острой фазы». Эти - нарушения, обусловленные вовлечением в реакцию нервной, эндокринной, иммунной и кроветворной систем, к которым относятся: лихорадка; сонливость; потеря аппетита (анорексия); безразличие к окружающему; боли в мышцах (миалгия) и суставах (артралгия). При этом наблюдается: нейтрофильный лейкоцитоз со сдвигом влево; ускорение СОЭ; активизация фагоцитоза (усиление кислородного метаболизма, поглотительной и бактерицидной активности нейтрофилов, моноцитов, макрофагов); изменение концентрации и соотношения сывороточных белков — повышение уровня белков острой фазы, снижение содержания альбумина и трансферрина; активация системы комплемента; активизация системы свертывания крови; повышение содержания в сыворотке крови ряда гормонов (адренокортикотропного гормона (АКТГ), вазопрессина); отрицательный азотистый баланс; изменение содержания микроэлементов в сыворотке крови (снижение уровня железа и цинка, повышение уровня меди). Ответ острой фазы обусловлен воздействием бактериальных, грибковых и вирусных инфекций, острых и хронических заболеваний неинфекционной природы, а также ожогов, травм, ишемических повреждений тканей, неопластического роста и др. Системные реакции, составляющие суть ответа острой фазы, связаны с синтезом в организме специальных медиаторов, (провоспалительные цитокины). Эти медиаторы попадают в кровоток и условием для их воздействия на клетки-мишени является присутствие на поверхности последних соответствующих рецепторов. К числу важнейших медиаторов ответа острой фазы относятся ИЛ-1, ИЛ-6, фактор некроза опухолей (ФНО-а). Спектр клеток-мишеней так же широк, как и спектр клеток продуцентов. К ним относятся кроветворные клетки, практически все клетки иммунной системы, включая моноциты, макрофаги и лимфоциты, клетки сосудистого эндотелия, гепатоциты, в случае ИЛ-1 — клетки гипоталамуса и гипофиза и т.д. Действие всех рассматриваемых цитокинов носит преимущественно защитный характер, однако в тех случаях, когда стимул к их выработке и активации клеток-мишеней бывает слишком интенсивным, эффект цитокинов может стать деструктивным. Это проявляется в развитии местного повреждения тканей вследствие развития чрезмерно интенсивного воспаления, а также индукции программированной гибели клеток. Белки острой фазы Ответ острой фазы характеризуется существенным увеличением содержания в сыворотке определенных белков, которые получили название белков острой фазы У человека к ним причисляют С-реактивный белок, сывороточный амилоид А, фибриноген, гаптоглобин, а-1-антитрипсин, а-1-антихимотрипсин и другие — всего около 30 белков (синтез в печени). Существуют белки, содержание которых в сыворотке во время ответа острой фазы снижается. Такие белки иногда называют негативными белками острой фазы. К ним относятся, в частности, альбумин и трансферрин. С-реактивный белок (СРВ) СРБ взаимодействует с полисахаридными и липидными компонентами поверхности микробов, прежде всего с фосфорилхолином. В то же время, он не способен взаимодействовать с фосфорилхолином соматических клеток хозяина. С-реактивный белок действует как опсонин, поскольку его связь с микроорганизмами облегчает поглощение их фагоцитами хозяина; активирует комплемент, способствуя лизису бактерий и развитию воспаления; усиливает цитотоксическое действие макрофагов на клетки опухолей; стимулирует высвобождение цитокинов макрофагами. Содержание СРБ в сыворотке крови быстро нарастает в самом начале инфекционных и неинфекционных болезней (от 1 мкг/мл до более чем 1 мг/мл) и быстро снижается при выздоровлении. Поэтому СРБ служит достаточно ярким, хотя и неспецифическим маркером повреждений. Сывороточный амилоид А (САА) -Он находится в сыворотке крови в комплексе с липопротеинами высокой плотности и вызывает адгезию и хемотаксис фагоцитов и лимфоцитов, способствуя развитию воспаления в пораженных атеросклерозом сосудах. Продолжительное увеличение содержания САА в крови при хронических воспалительных и неопластических процессах предрасполагает к амилоидозу. Фибриноген — белок системы свертывания крови; создает матрикс для заживления ран, обладает противовоспалительной активностью, препятствуя развитию отека. Церуплазмин (поливалентная оксидаза) — белок, содержащий медь протектор клеточных мембран, нейтрализующий активность супероксидного и других радикалов, образующихся при воспалении. Гаптоглобин — связывает гемоглобин, а образующийся при этом комплекс действует как пероксидаза — фермент, способствующий окислению различных органических веществ перекисями. Конкурентно тормозит катепсин С и катепсины В и L. Ингибиторы активности ферментов — так называемые антиферменты — сывороточные белки, которые ингибируют протеолитические ферменты, проникающие в кровь из мест воспаления, где они появляются в результате дегрануляции лейкоцитов и гибели клеток поврежденных тканей. К ним относится а-1-антитрипсин, который подавляет действие трипсина, эластазы, коллагеназы, урокиназы, химотрипсина, плазмина, тромбина, ренина, лейкоцитарных протеаз. Недостаточность а-1-антитрипсина приводит к разрушению тканей ферментами лейкоцитов в очаге воспаления. Другой известный антифермент а-1-антихимотрипсин — оказывает действие, сходное с таковым а-1-антитрипсина. Трансферрин — белок, обеспечивающий транспорт железа в крови. При ответе острой фазы его содержание в плазме снижается, что приводит к гипосидермии. Другой причиной гипосидермии при тяжелых воспалительных процессах может быть усиленное поглощение железа макрофагами и повышение связывания железа лактоферрином, который синтезируется нейтрофилами и содержание которого в крови увеличивается параллельно с увеличением содержания нейтрофилов. Одновременно со снижением содержания трансферрина усиливается синтез ферритина, что способствует переходу лабильного железа в ферритиновые запасы и затрудняет использование железа. Снижение сывороточного железа препятствует размножению бактерий, но в то же время может способствовать развитию железодефицитной анемии. Главные медиаторы ответа острой фазы Интерлейкин-1 (ИЛ-1) — это многофункциональный (плейотропный) цитокин, обнаруженный впервые как продукт лейкоцитов, вызывающий лихорадку при введении животным. Он относится к семейству, состоящему из трех структурно родственных пептидов: интерлейкина-la (ИЛ-1а); интерлейкина-1(3) (ИЛ-1(3) и антагониста рецептора для ИЛ-1. Интерлейкин-1 секретируют многие клетки: моноциты, макрофаги, эндотелиальные клетки, нейтрофилы, В-клетки, натуральные киллерные клетки, фибробласты, дендритные клетки кожи, мезангиальные клетки почек, клетки глии, нейроны. Способностью секретировагь ИЛ-1 обладают также некоторые опухолевые клетки. Интерлейкин-1 стимулирует иммунную систему: активирует Т-клетки В-клетки, способствуя их пролиферации и дифференцировке в плазматические клетки, продуцирующие антитела. системы под влиянием ИЛ-1 является предупреждение избыточной активации иммунной системы. Этот цитокин воздействует на центральную нервную систему. Появление в мозге ИЛ-1 вызывает лихорадку, сонливость, снижение аппетита, адинамию, снижение интереса к окружающему, депрессию, меняет функцию эндокринной системы. Он активизирует ось «гипоталамус — гипофиз- надпочечники», вызывает высвобождение гипоталамусом аргинин-вазопрессина. В то же время он ингибирует секрецию пролактина, снижает секрецию гонадотропина и половых стероидных гормонов. Одним из важных последствий изменения функций эндокринной Интерлейкин-1 действует как гемопоэтин на стволовые клетки костного мозга в присутствии ИЛ-3 и других факторов гемопоэза, что приводит к нейтрофильному лейкоцитозу со сдвигом влево и к увеличению содержания тромбоцитов в крови. ИЛ-1 стимулирует секрецию других цитокинов, участвующих в ответы острой фазы, прежде всего ИЛ-6 и ФНО-а. В организме человека существует сложная система регуляции потенциально повреждающего действия ИЛ-1. В крови здоровых и больных людей циркулируют растворимые рецепторы ИЛ-1, которые являются внеклеточными фрагментами цитоплазматических рецепторов ИЛ-1 типов I и II. Оба растворимых рецептора связывают свободный ИЛ-1, предупреждая тем самым его взаимодействие с мембранными рецепторами. Другим важным элементом системы регуляции действия ИЛ-1 является естественный антагонист рецептора ИЛ-1. Несмотря на существование указанных механизмов сдерживания провоспалительной активности ИЛ-1, при некоторых обстоятельствах он секретируется в чрезмерных количествах, что вызывает разрушение тканей, степень которого может превышать первоначальное повреждение. В таких случаях продукция ИЛ-1 становится фактором, определяющим все дальнейшее течение болезни. Значительное увеличение сывороточного ИЛ-1(3) обнаруживается при септическом шоке — клиническом синдроме, возникающем при тяжелых бактериальных инфекциях. Имеются веские доказательства участия ИЛ-1 в повреждении тканей при воспалительных болезнях кишечника, почек, в гибели В-клеток поджелудочной железы при инсулинзависимом сахарном диабете, в развитии атеросклероза и в патогенезе многих других болезней. Представлены данные о том, что ИЛ-1 способствует прогрессии миелолейкоза. Интерлейкин-6 (ИЛ-6) — многофункциональный (плейотропный) цитокин, идентифицированный впервые как секретируемый Т-клетками фактор, вызывающий конечную дифференцировку В-клеток в плазматические клетки, К числу клеток-продуцентов ИЛ-6 относятся макрофаги, фибробласты, клетки сосудистого эндотелия, эпителиальные клетки, моноциты, Т-клет- ки, кератиноциты кожи, клетки эндокринных желез, глиальные клетки и нейроны дискретных областей мозга. Стимуляторами синтеза ИЛ-6 являются вирусы, бактерии, эндотоксины, липополисахариды, грибы, про- воспалительные цитокины ИЛ-1 и ФНО-а. Интерлейкин-6 секретируют также многие формы опухолевых клеток (клетки остеосаркомы, карциномы мочевого пузыря, шейки матки, миксомы, глиобластомы). В отличие от нормальных клеток опухолевые клетки продуцируют ИЛ-6 постоянно без внешней стимуляции. Интерлейкин-6 является главным стимулятором синтеза и секреции гепатоцитами печени белков острой фазы. Кроме того, он активирует ось «гипоталамус — гипофиз — надпочечники», вызывая секрецию кортико- тропинвысвобождающего фактора нейронами гипоталамуса и непосредственно воздействуя на клетки передней доли гипофиза. Подобно ИЛ-1, ИЛ-6 опосредует лихорадочный ответ на эндотоксин, стимулирует пролиферацию лейкоцитов в костном мозге. Интерлейкин-6 необходим для конечной дифференцировки активированных В-клеток в плазматические клетки, продуцирующие антитела, он усиливает продукцию некоторых классов иммуноглобулинов зрелыми плазматическими клетками, стимулирует пролиферацию и дифференцировку Т-клеток, увеличивает продукцию интерлейкина-2 зрелыми Т-клетками. Интерлейкин-6 относится к семейству гемопоэтических цитокинов. Он обладает свойствами фактора роста и дифференцировки для мультипотент- ных стволовых клеток, стимулирует рост гранулоцитов и макрофагов. Хотя первичная роль ИЛ-6 состоит в активации процессов восстановления нарушенного гомеостаза, его избыточная продукция способствует повреждению тканей. Так, существует прямая корреляция между степенью увеличения ИЛ-6 и прогрессией аутоиммунного ответа. Интерлейкин-6 способствует воспалительному повреждению суставов при ревматоидном артрите. Длительное повышение уровня ИЛ-6 в крови может быть причиной активации остеокластов, разрушающих костную ткань. фактор некроза опухолей (ФНО-а) — впервые был обнаружен как агент, способный уничтожать опухолевые клетки in vitro и вызывать геморрагический некроз трансплантированных опухолей у мышей in vivo. Этот же агент оказался ответственным за кахексию, развивающуюся при тяжелых хронических болезнях, что дало ему второе название «кахектин». Клетками-продуцентами ФНО-а являются прежде всего макрофаги, а кроме того, Т-, В-клетки, Т-киллеры, нейтрофилы, эозинофилы, астроциты, тучные клетки. Продукция ФНО-а может быть вызвана бактериальными токсинами (липополисахаридами, энтеротоксином), вирусами, микобактериями, грибами, паразитами, активированными компонентами комплемента, комплексами «антиген —антитело», цитокинами (Ш1-1, ИЛ-6, ГМ-КСФ). Фактор некроза опухолей а обладает мощным провоспалительным действием, которое обнаруживается прежде всего в местах его высвобождения. Он активирует лейкоциты, вызывает экспрессию молекул адгезии на мембране эндотелиальных клеток микроциркуляторных сосудов, способствуя тем самым миграции лейкоцитов из крови во внеклеточный матрикс; стимулирует секрецию лейкоцитами активных метаболитов кислорода; стимулирует участвующие в воспалении клетки к секреции провоспалительных цитокинов, в том числе ИЛ-1, ИЛ-8, ИЛ-6, у-интерферона. Во время заживления раны ФНО-а содействует пролиферации фибробластов, стимулирует ангиогенез. Фактор некроза опухолей усиливает пролиферацию Т-клеток, пролиферацию и дифференцировку В-клеток, стимулирует рост натуральных киллеров, усиливает их цитотоксичность. ФНО-а — один из важных факторов защиты от внутриклеточных патогенов, он обладает противовирусной активностью, замедляет рост или вызывает геморрагический некроз опухолей in vivo, цитотоксичен для многих линий опухолевых клеток in vitro. В то время как все перечисленные действия ФНО-а направлены на восстановление нарушенного гомеостаза, избыточная продукция его взывает системные токсические эффекты, Гиперпродукция ФНО-а может вызвать и другие угрожающие жизни расстройства, включая острый респираторный дистресс- синдром взрослых, множественные некрозы в желудочно-кишечном тракте, некроз эпителия почечных канальцев, кровоизлияния в надпочечники. Увеличение концентрации ФНО-а в меньшей степени, но на более длительный период вызывает анорексию, лихорадку, кахексию, обусловленную усиленным катаболизмом белка и исчезновением жировых запасов, обезвоживание, синтез белков острой фазы в печени, резистентность к инсулину. Как острый, так и хронический эффекты ФНО-а являются следствием его непосредственного действия на клетки-мишени и действия других веществ, высвобождение которых ФНО-а стимулирует. Так, острое токсическое действие высокой концентрации ФНО-а связано с его прямым цитотоксическим действием на многие клетки, включая клетки сократительного миокарда, гладкие мышцы сосудов и клетки сосудистого эндотелия, и с высвобождением таких биологически активных веществ, как катехоламины, глюкагон, АКТГ, кортизол, ИЛ-1, ИЛ-6, у-интерферона, фактора активации тромбоцитов, эйкозаноидов. В сыворотке и в моче больных опухолями, СПИДом, сепсисом обнаружены фрагменты внеклеточных доменов обоих типов рецепторов, известные как ФНО-связывающие белки. Концентрация этих белков в крови существенно возрастает в условиях избыточной продукции ФНО-а. Белки связываются с ФНО-а во внеклеточной жидкости, препятствуя тем самым взаимодействию ФНО-а с цито- плазматическими рецепторами и предупреждая цитотоксическое действие ФНО-а на клетки.. Патофизиология воспаления (Лекция № IX) Часть 1. 1. Понятие о воспалении. 2. Первичное и вторичное повреждение. 3. Нарушения обмена веществ при воспалении. 4. Медиаторы воспаления. 5. Стадии сосудистой реакции при воспалении. 6. Экссудат, его виды и функции. Воспаление (inflammatio) - это сложная местная защитно-приспособительная реакция соединительной ткани, сосудов и нервной системы целостного организма, выработанная в процессе эволюции у высокоорганизованных существ в ответ на повреждение, направлена на изоляцию и удаление повреждающего агента и ликвидацию последствий повреждения. Это типовой патологический процесс с изменением обмена веществ и кровообращения, фагоцитозом и пролиферацией. В основе любого воспаления лежит: 1) повреждение и 2) защитные реакции. Способность противостоять повреждению, способность к заживлению ран, к восстановлению по крайней мере некоторых утраченных тканей - важнейшее свойство живых организмов. И эти свойства определяются тем, что здоровый организм немедленно отвечает на повреждение рядом общих и местных реакций. Общие реакции обусловлены более или менее выраженными изменениями функционального состояния нервной, эндокринной и иммунной систем организма. Они сопровождаются изменениями реактивности всего организма в целом. Местные реакции, возникающие в зоне повреждения и в непосредственной близости от нее, характеризуют процесс, называемый воспалением. Биологический смысл воспаления в том, чтобы ограничить, задержать, остановить развитие повреждения и далее, если это удастся, расчистить зону повреждения от продуктов распада и разрушенных тканей, подготовив этим самым почву для собственно восстановительных процессов. В 18 веке Цельс описал 4 основных клинических признака воспаления: краснота (rubor), припухлость (tumor), боль (dolor) и повышение температуры (calor). Гален добавил пятый признак - нарушение функции (functio laesa). Rubor, tumor, dolor, calor et functio laesa symptomata inflammationis sunt. Причины воспаления : а) физические факторы, б) химические факторы, в) биологические факторы, г) расстройства кровообращения, д) опухолевый рост, е) иммунные реакции. Различаются 4 стадии: 1. альтерация (alteratio), 2. экссудация (exsudatio), 3. эмиграция (emigratio), 4. пролиферация (proliferatio).
Альтерация- это главное звено, по сути - пусковой механизм. Альтерация может быть первичная или вторичная. Первичная альтерация развивается сразу после воздействия повреждающего фактора и формируется на уровне функционального элемента органа. Первичная альтерация может проявляться специфическими изменениями, а также неспецифическими изменениями, которые развиваются стереотипно независимо от свойств и особенностей действия патогенного фактора. Эти изменения связаны: 1) с повреждением мембранных структур, 2) с повреждением мембраны митохондрий, 3) с повреждением лизосом. Нарушения структуры мембраны клеток ведет к нарушению клеточных насосов. Отсюда теряется способность клетки адекватно реагировать изменением собственного метаболизма на изменения гомеостаза окружающей среды, изменяются ферментативные системы и митохондрии. В клетке накапливаются недоокисленные продукты обмена: пировиноградная, молочная и янтарная кислоты. Первоначально эти изменения являются обратимыми и могут исчезнуть, если этиологический фактор прекратил свое действие. Клетка полностью восстанавливает свои функции. Если же повреждение продолжается и в процесс вовлекаются лизосомы, то изменения носят необратимый характер. Поэтому лизосомы называют "стартовыми площадками воспаления" и именно с них начинается формирование вторичной альтерации. Вторичная альтерация обусловлена повреждающим действием лизосомальных ферментов. Усиливаются процессы гликолиза, липолиза и протеолиза. В результате распада белков в тканях увеличивается количество полипептидов и аминокислот; при распаде жиров возрастают жирные кислоты; нарушения углеводного обмена ведет к накоплению молочной кислоты. Все это вызывает физико-химические нарушения в тканях и развиваются гиперосмия с повышением концентрации ионов K+, Na+, Ca2+, Cl-; гиперонкия - повышение количества белковых молекул из-за распада крупных на более мелкие; гипериония H+ - в связи с диссоциацией большого количества кислот с высвобождением ионов водорода. И как следствие всего этого - развивается метаболический ацидоз в связи с повышением кислых продуктов обмена. В процесс вовлекаются все компоненты ткани и альтерация носит необратимый характер, итогом которого будет аутолиз клеток. Образуются вещества, которые могут не только усиливать, но и ослаблять альтерацию, оказывая влияние на различные компоненты воспаления, т.е. регулируя микроциркуляцию, экссудацию, эмиграцию лейкоцитов и пролиферацию клеток соединительной ткани. Эти биологически активные вещества называются медиаторы или модуляторы воспаления. Медиаторы воспаления различаются :
●по времени их активности: ранние и поздние; ● по точке приложения: влияющие на сосуды или на клетки и ● по происхождению: гуморальные (плазменные) и клеточные. Источниками медиаторов воспаления могут быть белки крови и межклеточной жидкости, все клетки крови, клетки соединительной ткани, нервные клетки, неклеточные элементы соединительной ткани. Различают преформированные и вновь образующиеся медиаторы. Преформированные медиаторы синтезируются постоянно без всякого повреждения, накапливаются в специальных хранилищах и высвобождаются немедленно после повреждения (например - гистамин). Синтез других медиаторов начинается после повреждения, как ответная мера. Такие медиаторы называются вновь образующимися (например простагландины). Повреждение ткани сопровождается активацией специальных протеолитических систем крови, что ведет к появлению в очаге воспаления различных пептидов, выполняющих роль медиаторов воспаления. Вазоактивные кинины образуются так же при активации фибринолитической системы активированным фактором Хагемана, который превращает циркулирующий в крови неактивный плазминоген в активный фермент плазмин. Плазмин расщепляет фибрин (а своевременное переваривание фибрина необходимо для успешного заживления ран). При этом образуются пептиды, способные расширять сосуды и поддерживать увеличенную сосудистую проницаемость. Плазмин активирует систему комплемента. Система комплемента, включающая около 20 различных белков, активируется кроме фактора Хагемана еще двумя путями: классическим - это комплекс антиген-антитело и альтернативным - это липополисахариды микробных клеток. В воспалении участвуют С3а и С5а компоненты комплемента, которые опсонизируют и лизируют бактерии, вирусы и патологически измененные собственные клетки; способствуют дегрануляции тучных клеток и базофилов с высвобождением медиаторов. Компоненты комплемента вызывают также адгезию, агрегацию и дегрануляцию клеток крови, выход лизосомальных ферментов, образование свободных радикалов, ИЛ-1, стимулируют хемотаксис, лейкопоэз и синтез иммуноглобулинов. Медиаторы плазменного и клеточного происхождения взаимосвязаны и действуют по принципу аутокаталитической реакции с обратной связью и взаимным усилением. Нарушение микроциркуляции в очаге воспаления характеризуется изменением тонуса микроциркуляторных сосудов, усиленным током жидкой части крови за пределы сосуда (т.е. экссудацией) и выходом форменных элементов крови (т.е. эмиграцией). Для сосудистой реакции характерны 4 стадии : 1) кратковременный спазм сосудов, 2) артериальная гиперемия, 3) венозная гиперемия, 4) стаз. Спазм сосудов возникает при действии повреждающего агента на ткани и связан с тем, что вазоконстрикторы возбуждаются первыми, поскольку они чувствительнее вазодилятаторов. Спазм длится до 40 секунд и быстро сменяется артериальной гиперемией. Артериальная гиперемия формируется следующими тремя путями: ● как результат паралича вазоконстрикторов; ● как результат воздействия медиаторов с сосудорасширяющей активностью; ● как результат реализации аксон-рефлекса. Расслабляются прекапиллярные сфинктеры, увеличивается число функционирующих капилляров и кровоток через сосуды поврежденного участка может в десятки раз превышать таковой неповрежденной ткани. Расширение микроциркуляторных сосудов, увеличение количества функционирующих капилляров и повышенное кровенаполнение органа определяет первый макроскопический признак воспаления - покраснение. Если воспаление развивается в коже, температура которой ниже температуры притекающей крови, то температура воспаленного участка повышается - возникает жар. Поскольку в первое время после повреждения линейная и объемная скорость кровотока в участке воспаления достаточно велики, то оттекающая из очага воспаления кровь содержит большее количество кислорода и меньшее количество восстановленного гемоглобина и поэтому имеет яркокрасную окраску. Артериальная гиперемия при воспалении сохраняется недолго (от 15 минут до часа) и всегда переходит в венозную гиперемию, при которой увеличенное кровенаполнение органа сочетается с замедлением и даже полным прекращением капиллярного кровотока. Венозная гиперемия начинается с максимального расширения прекапиллярных сфинктеров, которые становятся нечувствительными к вазоконстрикторным стимулам и венозный отток затрудняется. После этого замедляется ток крови в капиллярах и приносящих артериолах. Главной причиной развития венозной гиперемии является экссудация - выход жидкой части крови из микроциркуляторного русла в окружающую ткань. Экссудация сопровождается повышением вязкости крови, периферическое сопротивление кровотоку возрастает, скорость тока крови падает. Кроме того, экссудат сдавливает венозные сосуды, что затрудняет венозный отток и также усиливает венозную гиперемию. Развитию венозной гиперемии способствует набухание в кислой среде форменных элементов крови, сгущение крови, нарушение десмосом, краевое стояние лейкоцитов, образование микротромбов. Кровоток постепенно замедляется и приобретает новые качественные особенности из-за повышения гидростатического давления в сосудах: кровь начинает двигаться толчкообразно, когда в момент систолы сердца кровь продвигается вперед, а в момент диастолы кровь останавливается. При дальнейшем повышении гидростатического давления кровь в систолу продвигается вперед, а в момент диастолы возвращается обратно - т.е.возникает маятникообразное движение. Толчкообразное и маятникообразное движение крови определяет возникновение пульсирующей боли. Постепенно экссудация вызывает развитие стаза - обычное явление при воспалении. Как правило, стаз возникает в отдельных сосудах венозной части микроциркуляторного русла из-за резкого повышения ее проницаемости. При этом жидкая часть крови быстро переходит во внесосудистое пространство и сосуд остается заполненным массой плотноприлежащих друг к другу форменных элементов крови. Высокая вязкость такой массы делает невозможным продвижение ее по сосудам и возникает стаз. Эритроциты образуют "монетные столбики", границы между ними постепенно стираются и образуется сплошная масса в просвете сосуда - сладж (от англ. sludge - тина, грязь). Механизмы экссудации: экссудация при воспалении обусловлена прежде всего повышением проницаемости микроциркуляторного русла для белка в следствие существенного изменения сосудистого эндотелия. Изменение свойств эндотелиальных клеток микроциркуляторных сосудов - это главная, но не единственная причина экссудации при воспалении. Образованию различного экссудата способствует рост гидростатического давления внутри микроциркуляторных сосудов, связанный с расширением приносящих артериол, увеличение осмотического давления интерстициальной жидкости, обусловленное накоплением во внесосудистом пространстве осмотически активных продуктов распада ткани. Более значительно процесс экссудации выражен в венулах и капиллярах. Экссудация формирует четвертый признак воспаления – припухлость (tumor). Состав экссудата (exsudatum) - это жидкая часть крови, форменные элементы крови и разрушенные ткани. По составу экссудата выделяют 5 видов воспаления: ● серозный; ● катаральный (слизистый); ● фибринозный; ● геморрагический; ● гнойный; ● ихорозный. Функции экссудата - в результате экссудации происходит разбавление концентрации бактериальных и других токсинов и разрушение их поступающими из плазмы крови протеолитическими ферментами. В ходе экссудации в очаг воспаления поступают сывороточные антитела, которые нейтрализуют бактериальные токсины и опсонизируют бактерии. Воспалительная гиперемия обеспечивает переход в очаг воспаления лейкоцитов крови, способствует фагоцитозу. Фибриноген экссудата превращается в фибрин, нити которого создают структуру, облегчающую переход лейкоцитов в рану. Фибрин играет важную роль в процессе заживления ран. Однако экссудация имеет и отрицательные последствия - отек тканей может привести к удушью или угрожающему для жизни повышению внутричерепного давления. Нарушения микроциркуляции способны привести к ишемическому повреждению тканей. Излишнее отложение фибрина может препятствовать последующему восстановлению поврежденной ткани и способствовать избыточному разрастанию соединительной ткани. Поэтому врач должен осуществлять эффективный контроль за развитием экссудации.
Патофизиология воспаления (Лекция № X) Часть 2.
1. Эмиграция лейкоцитов в очаге воспаления. 2. Функции лейкоцитов в очаге воспаления. 3. Острое и хроническое воспаление. 4. Биологическая сущность воспаления. 5. Диагностика воспаления. При переходе артериальной гиперемии в венозную лейкоциты постепенно перемещаются из осевого слоя в периферический - пристеночный и начинают прилипать к поверхности эндотелия .Возникает "краевое стояние лейкоцитов" и с этого момента начинается массовая миграция лейкоцитов в очаг воспаления. Лейкоцит должен преодолеть две преграды: эндотелий и базальную мембрану. Слой эндотелия лейкоциты проходят, протискиваясь между эндотелиальными клетками, а базальную мембрану временно растворяют своими протеазами. Весь процесс перехода лейкоцита через стенку сосуда занимает от 2 до 12 минут и не вызывает повреждения стенки сосуда. Главным место эмиграции лейкоцитов являются посткапиллярные венулы. При остром воспалении прежде всего эмигрируют нейтрофилы и значительно позднее - моноциты. Эозинофилы, базофилы и лимфоциты так же способны к эмиграции. Эмиграция лейкоцитов связана с появлением в очаге воспаления специальных медиаторов хематтрактантов. Наиболее сильными хематтарактантами являются липополисахариды, входящие в состав бактериальных эндотоксинов. К наиболее сильным эндогенным хематтрактантом относятся фрагменты активируемого при воспалении комплемента, особенно С5а, лейкотриен В4, фактор активации тромбоцитов и каликреин. Эмиграция лейкоцитов в очаг воспаления начинается с адгезии их к эндотелию сосудов микроциркуляторного русла. Адгезивность увеличивается в результате усиленного образования эндотелиальными клетками специальных молекул РНК и соответствующего им белка. Прохождение лейкоцитов через сосудистую стенку это результат присущей этим клеткам способности к движению - т.е. локомоции, которая так же активируется хематтрактантами. Внутри цитоплазмы лейкоцитов увеличивается концентрация ионов кальция. Это активирует микротубулярную систему, образующую внутренний скелет клетки, активирует актомиозиновые комплексы, усиливается секреция нейтрофилами их гранулярного содержимого, в том числе нейтрофильных протеаз, способных растворять базальную мембрану сосудов. Взаимодействие хематтрактантов с поверхностными рецепторами лейкоцитов сопровождается активацией различных находящихся в них ферментов, в том числе кальций-зависимой фосфолипазы А2, кальций-зависимых протеиновых киназ: протеинкиназы А и протеинкиназы С. Под влиянием хематтрактантов в лейкоците на переднем полюсе кортикальный гель превращается в золь, т.е. становится более жидким. В эту разжиженную часть лейкоцита переливается золь его центральной части. Лейкоцит укорачивается сзади и удлиняется спереди. Разжиженная часть кортикального геля переднего полюса с силой выбрасывается назад и тем самым лейкоцит передвигается вперед. Наибольшей функциональной активностью обладают нейтрофильные лейкоциты. Полиморфноядерные лейкоциты первыми приходят в очаг воспаления, поскольку они более чувствительны, их гораздо больше в крови. Их называют клетками "аварийного реагирования" и одноразового пользования. Моноциты находятся в крови до 3 суток, уходят в ткани и находятся в них около 10 дней. Часть их дифференцируется в оседлые тканевые макрофаги, часть находится в неактивном состоянии и может вновь активироваться. Поэтому моноциты называют клетками многоразового пользования. Такая последовательность выхода форменных элементов крови за пределы сосуда была выявлена Мечниковым и называется "закон эмиграции" или "стадии клеточной реакции при воспалении": 1) полинуклеарная (нейтрофилы и эозинофилы) до 2 суток, 2) мононуклеарная (моноциты и лимфоциты) до 5-6 дней, 3) фибробластическая, характеризуется скоплением в очаге воспаления гистиоцитов и фибробластов. Важнейшей функцией лейкоцитов в очаге воспаления является фагоцитоз - т.е. захват, убиение и переваривание бактерий, а так же переваривание продуктов распада тканей и клеток собственного организма. В ходе фагоцитоза различают 4 стадии : 1) стадия приближения фагоцита к объекту; 2) стадия прилипания фагоцита к объекту; 3) стадия поглощения фагоцитом объекта; 4) стадия внутриклеточных превращений поглощенного объекта. Первая стадия объясняется способностью фагоцитов к хемотаксису. В механизмах прилипания и последующего поглощения фагоцитом объекта большую роль играют опсонины - антитела и фрагменты комплемента, плазменные белки и лизоцим. Установлено, что определенные участки молекул опсонинов связываются с поверхностью атакуемой клетки, а другие участки той же молекулы - с мембраной фагоцита. Механизм поглощения не отличается от прилипания - захват осуществляется путем постепенного обволакивания фагоцитом микробной клетки, т.е. по-существу путем прогрессирующего прилипания поверхности фагоцита к поверхности микроба до тех пор, пока весь объект не будет "обклеен" мембраной фагоцита. В следствие этого поглощаемый объект оказывается внутри фагоцита, заключенным в мешок, образованный частью мембраны фагоцитирующей клетки. Этот мешок называется фагосома. Образование фагосомы начинает стадию внутриклеточных превращений поглощенного объекта внутри фагосомы, т.е. вне внутренней среды фагоцита. Основная часть внутриклеточных превращений поглощенного при фагоцитозе объекта связана с дегрануляцией - т.е.переходом содержимого цитоплазматических гранул фагоцитов внутрь фагосомы. В этих гранулах у всех облигатных фагоцитов содержится большое количество биологически активных веществ преимущественно ферментов, которые убивают и затем переваривают микробы и другие поглощенные объекты. В нейтрофилах имеется 2-3 вида гранул, которые содержат лизоцим - растворяющий микробную стенку, лактоферрин - белок, связывающий железо и тем самым оказывающий бактериостатические действие, миелопероксидазу, нейтральные протеазы, кислые гидролазы, белок, связывающий витамин В12 и другие. Как только образуется фагосома, к ней вплотную подходят гранулы. Мембраны гранул сливаются с мембраной фагосомы и содержимое гранул поступает внутрь фагосомы. Как уже говорили, нейтрофилы - первые лейкоциты, инфильтрирующие зону воспаления. Они обеспечивают эффективную защиту от бактериальных и грибковых инфекций. Если же рана не инфицирована, то содержание нейтрофилов в ней быстро снижается и через 2 суток в очаге воспаления преобладают макрофаги. Как и нейтрофилы, воспалительные макрофаги - это подвижные клетки, защищающие организм с помощью фагоцитоза от различных инфекционных агентов. Они также способны секретировать лизосомальные ферменты и кислородные радикалы, но отличаются от нейтрофилов рядом качеств, которые делают эти клетки особенно важными на более поздних этапах острого воспаления и в механизмах заживления ран: 1. Макрофаги живут гораздо дольше (месяцы, а нейтрофилы – неделю). 2. Макрофаги способны распознавать, а затем поглощать и разрушать поврежденные и нежизнеспособные клетки собственного организма, в том числе и нейтрофилы. С этим связана их чрезвычайная роль в "уборке" воспалительного экссудата. Макрофаги это главные клетки, участвующие в растворении и удалении из очага воспаления поврежденной соединительной ткани, что необходимо для последующей реконструкции тканей. Они синтезируют и секретируют нейтральные протеазы: эластазу, коллагеназу, активатор плазминогена, разрушающие внеклеточные коллагеновые и эластиновые волокна соединительной ткани. Макрофаги играют одну из ключевых ролей в заживлении ран. У животных в эксперименте, лишенных мононуклеаров, раны не заживают. Это объясняется тем, что макрофаги синтезируют факторы роста для фибробластов и других мезенхимальных клеток, продуцируют факторы, увеличивающие синтез коллагена фибробластами, являются источниками факторов, управляющих различными этапами ангиогенеза - реваскуляризации поврежденной ткани, продуцируют полипептидные гормоны, являющиеся медиаторами "ответа острой фазы" - интерлейкин-1 и ИЛ-6 и фактор некроза опухолей. Воспаление делят на острое и хроническое. Острое воспаление (inflammatio acuta) развивается в связи с внезапным повреждением - ожогом, отморожением, механической травмой, некоторыми инфекциями. Его продолжительность обычно не превышает нескольких суток. Острое воспаление характеризуется выраженными экссудативными реакциями, в ходе которых вода, белки, форменные элементы крови (в основном лейкоциты) покидают кровоток и поступают в зону повреждения. Хроническое воспаление (inflammatio chronica) развивается, когда повреждающий агент действует в течение длительного времени. Хроническое воспаление продолжается недели, месяцы и годы. Оно характеризуется не столько экссудацией, сколько пролиферацией фибробластов и сосудистого эндотелия, а также скоплением в очаге воспаления специальных клеток - макрофагов, лимфоцитов, плазматических клеток и фибробластов. Большая часть наиболее тяжелых болезней человека характеризуется как раз хроническим воспалительным процессом - это лепра, ревматоидный артрит, туберкулез, хронический пиелонефрит, сифилис, цирроз печени и так далее. Хроническое воспаление обычно сопровождается необратимыми повреждениями нормальной паренхимы, дефекты которой заполняются фиброзной соединительной тканью, деформирующей пораженные органы. В оптимальном случае прекращение действия повреждающего агента сопровождается затуханием воспалительного ответа и полным устранением всех последствий самих воспалительных реакций - т.е. "полное разрешение воспаления". Это означает прекращение образования медиаторов и исчезновение их из зоны повреждения, прекращение эмиграции лейкоцитов, восстановление сосудистой проницаемости, удаление жидкости, белков, продуктов распада бактерий и клеток (в том числе нейтрофилов и макрофагов). Исчезновение медиаторов обусловлено отчасти их спонтанной диффузией из очага воспаления и частично инактивацией различными ферментами, причем система инактивации развивается в ходе самого воспаления. Если повышение проницаемости сосудов не было связано с грубым повреждением эндотелиальных клеток, то проницаемость быстро нормализуется после исчезновения медиаторов. Большая часть скопившейся в очаге воспаления жидкости удаляется с током лимфы. Отложения фибрина растворяются фибринолитическими ферментами крови, ферментами клеток воспаления и также удаляются по лимфатическим сосудам. Возможно, что по лимфатическим сосудам уходят и макрофаги. Часть макрофагов, нагруженных нетоксичными неразрушенными веществами, может оставаться долгое время в месте бывшего воспаления. Полное разрешение воспаления создает условия для полного восстановления структуры и функции поврежденных тканей. Однако это бывает только при относительно небольших ранениях органов и тканей, обладающих к тому же высокой способностью к регенерации - кожа, слизистые, паренхима внутренних органов. Неполное разрешение воспаления приводит к тому, что восстановление происходит при помощи рубцевания. Общая реакция организма на воспаление зависит от локализации, причины, степени повреждения органа, возникновения недостаточности функции органа, реактивности и резистентности организма, иммунитета, состояния желез внутренней секреции, питания,конституции, пола, возраста, ранее перенесенных заболеваний. Биологическая сущность воспаления.И.И. Мечников 25 лет (с 1882 г.) исследовал фагоцитоз. Его метод сравнительной патологии - изучение процесса в эволюционном аспекте. Он доказал, что воспаление встречается у всех представителей животного мира. У одноклеточных защита и питание совпадают. У низших многоклеточных (губка) фагоцитировать могут все клетки. При формировании зародышевых листков фагоцитоз закрепляется за мезодермой. При формировании сосудистой системы открытого типа (раки) фагоциты проще доставляются в очаг воспаления и у высших к фагоцитарной реакции присоединяется реакция сосудов, нервной системы и соединительной ткани. Это реакция целостного организма, выработанная в процессе эволюции, имеет защитно-приспособительное значение - в основе защиты лежит фагоцитоз, все остальное есть лишь аксессуары воспалительной реакции. Диагностика воспаления - на видимых участках тканей оно проявляется вышеуказанными признаками: покраснение, повышение температуры, припухлось, боль и нарушение функции. Методы оценки функциональной оценки фагоцитов: а) определение функциональной активности лейкоцитов: 1. % фагоцитоза - это экстенсивный показатель % фагоцитирующих клеток на 100 потенциальных фагоцитов, 2. фагоцитарное число - это количество объектов фагоцитоза, захваченных этими 100 фагоцитами, 3. фагоцитарный индекс - или интенсивность поглощения - это количество захваченных объектов фагоцитоза, которое приходится на долю каждого фагоцитирующего лейкоцита, 4. суммарная интенсивность поглощения - это количество объектов фагоцитоза, захваченных фагоцитами, содержащимися в 1 мм3, 5. завершенность фагоцитоза, 6. конгоротовый индекс - скорость исчезновения из крови крупнодисперсной краски при внутривенном введении после повторного исследования венозной крови через 15-20 мин, 7. для оценки степени вакцинации определяют титр антител, 8. Исследуется клеточный состав экссудата, 9. Определение общего количества лейкоцитов и лейкоцитарной формулы. Зависимость воспалительной реакции от общего состояния - реактивности и резистентности, которые обеспечивают появление, развитие, течение и исход воспаления. Воспаление может быть: ● нормэргическое - при хорошей реактивности у здоровых лиц, ● гиперэргическое (очень бурное) - при аллергии или у холериков, ● гипоэргическое - как положительная гипо- и анергия при иммунитете и отрицательная гипо- и анергия при низкой реактивности, голодании, истощении регуляторных систем (нервной и эндокринной).
Лихорадка (Лекция № XI).
1.Определение понятия лихорадка и гипертермия. 2.Патогенез клинических проявлений лихорадки. 3.Этиология лихорадки. 4.Патогенез лихорадочной реакции. Лихорадка (febris, pyrexia) - типовое изменение терморегуляции высших гомойотермных животных и человека на воздействие пирогенных раздражителей,выражающееся перестройкой терморегуляторного гомеостаза организма на поддержание более высокого уровня теплосодержания и температуры тела. В отличие от лихорадки - гипертермия (hyperthermia - перегревание) - состояние организма, характеризующееся нарушением теплового баланса и повышением теплосодержания организма. Лихорадка и гипертермия -это типические патологические процессы,общим признаком которых является повышение температуры тела. Главным их отличием является то, что при лихорадке уровень температуры тела не зависит от температуры окружающей среды. При гипертермии имеется прямая зависимость. По своему биологическому значению лихорадка - это защитно-приспособительная реакция, а гипертермия - это полом, нарушение терморегуляции, отсюда разный подход к ведению больных. Принято выделять ядро организма и его оболочку. Ядро составляют мозг, грудная, брюшная и тазовая полости. В ядре организма температура жестко фиксирована в пределах 37 градусов - т.е. ядро гомойотермно. А температура оболочки зависит от температуры окружающей среды. Таким образом, оболочка - пойкилотермна. Какие же механизмы так тонко регулируют теплопродукцию и теплоотдачу? Это осуществляет центр терморегуляции гипоталамуса. Он состоит из трех различных морфологических образований. 1. термочуствительная часть, 2. термоустановочная часть, определяет уровень температуры тела, 3. два эфферентныхобразования: а) центр теплопродукции, б) центр теплоотдачи. Стадии лихорадки: 1) Stadium incrementi - стадия подъема температуры тела, 2) Stadium fastigii - стадия стояния высокой температуры, 3) Stadium decrementi - стадия снижения температуры и возврат ее к норме. Клиническая характеристика стадий: 1-я стадия - повышение температуры - характеризуется ознобом, сопровождающимся ощущением холода. Патогенез озноба - происходит спазм сосудов кожи и понижение температуры кожи на 10-12 градусов (кроме подмышечной и паховой области). Это вызывает раздражение холодовых рецепторов (ощущение холода) и ответную реакцию на холод - мышечную дрожь. Субъективно все это воспринимается, как озноб. Подъем температуры тела может быть быстрым, а озноб очень сильным и наоборот, медленным, постепенным, с незначительным ознобом или даже без него. Во второй стадии (патогенез ощущения жара) больной говорит, что он горит от жара. Это ощущение обусловлено расширением сосудов кожи при высокой температуре тела. По особенностям температурной кривой (высоты подъема) в зависимости от характера ее колебаний в течение суток различают следующие виды лихорадки: 1) субфебрильную - до 38 градусов, 2) умеренную - 38-39 градусов, 3) высокую - 39-40 градусов и 4) чрезмерную - гиперпиретическую (41 градус и выше). Во время лихорадки температура тела может доходить до 42 градусов. При превышении этой границы возникают глубокие нарушения функции ЦНС и может возникнуть угроза для жизни больного. Степень повышения температуры при различных заболеваниях зависит: 1) от реактивности организма (например у холериков температура тела выше), 2) от введения возбуждающих ЦНС веществ: кофеин, фенамин (а наркоз и бромиды снижают реакцию), 3) от пирогенной активности микробов, 4) от интенсивности выработки эндогенных пирогенов, то определяется количеством лейкоцитов, 5) от функционального состояния центров терморегуляции и образования медиаторов. Типы лихорадочных (температурных) кривых: 1) постоянная температурная кривая (febris continua) - колебания в пределах не более 1 градуса, 2) ремиттирующая - febris remittens - или послабляющая (колебания температуры в пределах 1,5 - 2 градусов), 3) перемежающаяся или интермиттирующая - febris intermittens- это правильное чередование нормальной температуры с периодами подъема, 4) возвратная - febris recurrens -5-7 дней лихорадка и 3-4 дня норма, т.е. промежутки между лихорадочным периодом и периодами нормы, как правило, не одинаковые. 5) изнуряющая или гектическая - febris hectica колебания температуры в течение суток доходят до 3-5 градусов (утром норма, вечером 40 градусов). При этом лихорадка может быть атипичной, когда утром температура выше, чем вечером. Патогенез 3 стадии (снижения температуры) проявляется клинически потоотделением. Потоотделение является основным видом отдачи тепла в период снижения температуры и возврата ее к норме. Температура тела может падать быстро (критически) и медленно (литически). Быстрое падение температуры может быть опасным, особенно у лиц пожилого возраста, перенесших инфаркт миокарда или имеющих кардиосклероз. Кризис может привести к коллапсу от острой сердечной недостаточности. Этиологические факторы лихорадки. Они делятся на инфекционные и неинфекционные: это липополисахариды микробов, их экзо- и эндотоксины, вирусы, риккетсии, клетки чужеродного трансплантата, продукты распада собственных тканей, лимфокины, хемотаксины, комплекс аллерген-антитело, аллергены. Лихорадка вызывается особыми веществами - пирогенами. Они по происхождению делятся на: 1. Экзопирогены (из эндотоксинов микробов - бактериальные). 2. Эндопирогены (клеточные). Характеристика экзопирогенов: по химическому строению - это высокомолекулярные липополисахариды. Установлено, что: 1) экзопирогены вызывают лихорадку опосредованно через образование эндопирогенов, поэтому лихорадка развивается через 45-60 минут и максимум ее через 3-4 часа, 2) не токсичны, 3) термоустойчивы (для разрушения надо автоклавировать в течение 1-2 часов при температуре 200 градусов), 4) не аллергенны, 5) не антигенны, 6) но несут на себе антигенную химическую специфичность - т.е. являются гаптенами. Для приобретения антигенных свойств они должны соединиться с белками клеток и тканей, 7) при ежедневном введении 5-6 раз к экзопирогенам возникает толерантность и лихорадка не развивается, 8) экзопирогены вызывают ряд защитных эффектов. Эндогенные пирогены: их источником являются нейтрофилы, макрофаги и лимфоциты крови - это лейкоцитарные пирогены или интерлейкин-1. Свойства лейкопирогенов: 1) вырабатываются только живыми лейкоцитами, по строению - это белок типа альбумина, 2) неустойчивы к нагреванию - разрушаются при температуре, вызывающей коагуляцию белка (60-70 градусов), 3) температурная реакция на эндопироген развивается через 10-15 мин. Максимум подъема температуры после введения эндопирогена через 1-2 часа (экзопирогена 3-4). Характеристика интерлейкина-1: 1) он вырабатывается в микро- и макрофагах, не вызывает толерантности, нетоксичен, действует на все основные регулирующие системы организма и прежде всего те, которые определяют реактивность и резистентность - нервную и эндокринную, 2) действует на клетки гипоталамуса и усиливает выработку CRF, которые запускают стресс-реакцию, мобилизуют энергетические ресурсы, развиваются гипергликемия, липемия. Эндопирогены дают такой же биологический эффект, как и экзопирогены, повышая защитные свойства организма: 1) усиливают фагоцитоз, 2) усиливают выработку глюкокортикоидов, 3) усиливают регенерацию тканей, которая ведет к образованию нежных рубцов (применяется при повреждении ЦНС для предотвращения осложнений (эпилепсии, парезов, параличей), 4) усиливают дезинтоксикационную функцию печени, 5) улучшают процессы микроциркуляции - вот почему пирогены применяются при вялом течении заболеваний,при хронической язве желудка для ускорения заживления и рубцевания язв, при почечной гипертонии для улучшения процессов микроциркуляции в почках(в нефроне, клубочках) и уменьшения выработки ренина. Лейкопироген вырабатывается при раздражении лейкоцитов: 1) при воспалении, 2) действии токсинов, 3) под влиянием шероховатости стенки сосудов, при контакте лейкоцитов с микробами даже в кровеносном русле, 4) при изменении pH в кислую сторону (ацидоз). Характеристика лимфоцитарных и макрофагальных пирогенов. Макрофаги крови альвеол и брюшины в процессе фагоцитоза вырабатывают такое же вещество, как нейтрофилы - интерлейкин-1. Лимфоцитарный пироген вырабатывается сенсибилизированными лимфоцитами при аллергии при контакте с аллергеном. Патогенез лихорадочной реакции(механизмы накопления тепла в организме). Измерение количества тепла в организме методом прямой калориметрии показало, что увеличение образования тепла не превышает 25 %. Лишь в стадии стояния температуры на высоких цифрах увеличение образования тепла достигает 40 %. Каковы же особенности теплообмена при лихорадке? Почему повышается температура тела? Возможны 2 варианта: 1) уменьшение теплоотдачи, 2) усиление теплопродукции. Исследования влияния пирогенов показало, что организм сам активно формирует лихорадку. Подъем температуры в начальной стадии связан с уменьшением теплоотдачи - это главное звено патогенеза. Усиление теплопродукции помогает быстрее повысить температуру (быстрее разогреться). Цепь патогенеза лихорадки: 1) внедрение экзогенных пирогенов в организм, 2) взаимодействие экзопирогенов с фагоцитами организма, 3) активация фагоцитов, 4) выделение активированными фагоцитами эндопирогенов - интерлейкина-1, 5) воздействие интерлейкин-1 на центр терморегуляции (в 1-ю очередь на термоустановочную точку), 6) повышение возбудимости холодочувствительных нейронов и снижение возбудимости теплочувствительных нейронов, 7) индукция усиленного синтеза простагландина Е2 в нервных клетках гипоталамуса и возбуждение симпатоадреналовых структур, 8) ограничение теплоотдачи (за счет спазма поверхностных сосудов) и повышение теплопродукции, 9) повышение температуры тела до нового уровня регулирования. Влияние на лихорадку физической работы и температуры окружающей среды. Установлено, что: 1) физическая работа, 2) умеренное согревание или 3) умеренное охлаждение при лихорадке температуру тела не меняют. Увеличение теплообразования даже более чем на 200 % не меняет температуры. Т.е. при лихорадке механизмы терморегуляции находятся в активном состоянии, лихорадящий организм удерживает температуру на высоких цифрах, сохраняя температурный гомеостаз. Доказательства прямого действия эндопирогенов на центры терморегуляции: 1) наркоз подавляет лихорадку, 2) введение возбуждающих средств - усиливает ее, 3) у больных с психическими заболеваниями в стадии возбуждения пирогены вызывают более высокую лихорадку, чем в состоянии депрессии, 4) после введения пирогенов возникает повышение биоэлектрической активности центров теплорегуляции на электроэнцефалограмме, 5) у истощенных, ослабленных людей, у стариков с пониженной реактивностью ЦНС лихорадочная реакция резко ослаблена, 6) применение жаропонижающих средств, которые оказывают специфическое тормозящее влияние на центры терморегуляции и вызывают понижение температуры тела. Вызывая расширение сосудов, они увеличивают теплоотдачу и за счет этого снижение температуры. Состояние центров теплорегуляции находит отражение в характере температурной кривой: ● лихорадка постоянного типа свидетельствует об устойчивом - оптимальном возбуждения центра терморегуляции, ● ремиттирующая кривая свидетельствует о неустойчивости возбуждения центра терморегуляции, ● интермиттирующая лихорадка характерна для септического состояния. ● неблагоприятно протекает гектическая - она свидетельствует о том, что периоды возбуждения центра терморегуляции сменяются периодами запредельного торможения. Характер температурной кривой отражает состояние реактивности еще ряда центров: ДЦ и ВМЦ. Вот почему эти кривые имеют диагностическое и прогностическое значение. Особенно неблагоприятным является извращенный характер лихорадки - что говорит о быстром истощения центра терморегуляции. Биологическое значение лихорадки - в основном создание более высокого температурного фона для обменных процессов, что ведет к повышению уровня защитных реакций: 1) активирование ферментов, 2) усиление фагоцитоза. Известно, что биохимические процессы протекают значительно быстрее при температуре 39 градусов, чем при 36. Это одна из приспособительных реакций организма. Гипертермия (Лекция № XII). 1. Виды, причины и патогенез гипертермий. 2. Отличие лихорадки от гипертермий. 3. Тактика врача при повышении температуры тела. 4. Особенности перегревания у детей. Гипертермия (hyperthermia) - типовой патологический процесс, характеризуется повышением температуры тела, уровень которой зависит от окружающей среды. В отличие от лихорадки это очень опасное состояние, т.к. оно сопровождается поломом механизмов терморегуляции. Гипертермия возникает при таких условиях, когда организм не успевает выделить избыточное количество тепла (это зависит от соотношения теплопродукции и теплоотдачи). Величина теплоотдачи регулируется физиологическими механизмами, важнейшим из которых является вазомоторная реакция. Благодаря снижению тонуса сосудов кровоток в коже человека может возрости от 1 до 100 мл/мин на 100 см3. Через кисти рук может быть отведено до 60 % теплопродукции основного обмена, хотя их площадь равна 6 % общей поверхности. Другим важнейшим механизмом является потоотделение - при интенсивной работе потовых желез выделяется до 1,5 л пота в час (на испарение 1 г воды тратится 0,58 ккал) и всего 870 ккал/час - достаточно для удержания нормальной температуры при тяжелой работе в условиях повышения температуры окружающей среды. Третий - испарение воды со слизистых оболочек дыхательных путей. Классификация гипертермий в зависимости от источника образования избытка тепла: 1) гипертермия экзогенного происхождения (физическая), 2) эндогенная гипертермия (токсическая), 3) гипертермия, возникающая в результате перераздражения симпатоадреналовых структур, что ведет к спазму сосудов и резкому уменьшению отдачи тепла при нормальной теплопродукции (т.н. бледная гипертермия). Экзогенная гипертермия возникает при длительном и значительном повышении температуры окружающей среды (при работе в горячих цехах, в жарких странах и т.п.), при большом поступлении тепла из окружающей среды (особенно в условиях высокой влажности, что затрудняет потоотделение) - тепловой удар. Это физическая гипертермия при нормальной терморегуляции. Перегревание возможно и в результате прямого воздействия солнечных лучей на голову - солнечный удар. По клинической и морфологической картине тепловой и солнечный удары настолько близки, что их не стоит разделять. Перегревание тела сопровождается усиленным потоотделением со значительной потерей организмом воды и солей, что ведет к сгущению крови, увеличению ее вязкости, затруднению кровообращение и кислородному голоданию. Ведущими звеньями патогенеза теплового удара является расстройства водно - электролитного баланса из-за нарушения потоотделения и деятельности гипоталамического центра терморегуляции. Тепловой удар нередко сопровождается развитием коллапса. Нарушениям кровообращения способствует токсическое действие на миокард избытка в крови калия, освобождающегося из эритроцитов. При тепловом ударе страдают также регуляция дыхания и функция почек, различные виды обмена. В ЦНС при тепловом ударе отмечают гиперемию и отек оболочек и ткани мозга, множественные кровоизлияния. Как правило, наблюдается полнокровие внутренних органов, мелкоточечные кровоизлияния под плевру, эпикард и перикард, в слизистую оболочку желудка, кишечника, нередко отек легких, дистрофические изменения в миокарде. Тяжелая форма теплового удара развивается внезапно: изменения сознания от легкой степени до комы, судороги клонического и тонического характера, периодическое психомоторное возбуждение, часто бред, галлюцинации. Дыхание поверхностное, учащенное, неправильное. Пульс до 120- 140/мин малый, нитевидный, тоны сердца глухие. Кожа сухая, горячая или покрывается липким потом. Температура тела 41-42 градусов и выше. На ЭКГ признаки диффузного поражения миокарда. Наблюдается сгущение крови с нарастанием остаточного азота, мочевины и уменьшения хлоридов. Может быть гибель от паралича дыхания. Летальность до 20-30%. Патогенетическая терапия - любое простое охлаждение- применение кондиционеров, в горячих цехах - различных щитов. Эндогенная (токсическая) гипертермия возникает в результате резкого увеличения образования тепла в организме, когда он не в состоянии выделить этот избыток путем потоотделения и за счет других механизмов. Причиной является накопление в организме токсинов (дифтерийного, гноеродных микробов, в эксперименте - тироксина и a-динитрофенола), под влиянием которых выделяется большое количество макроэргических соединений (АДФ и АТФ), при распаде которых образуется и выделяется большое количества тепла. Если в норме энергия при окислении питательных веществ идет на образование тепла и синтез АТФ, то при токсической гипертермии энергия идет только на образование тепла. Стадии экзогенной и эндогенной гипертермий и их клиническое проявление: а) приспособительная стадия характеризуется тем, что температура тела еще не повышена за счет резкого увеличения теплоотдачи путем: 1. усиленного потоотделения, 2. тахикардии, 3. расширения сосудов кожи, 4. учащенного дыхания. У пациента - головная боль, адинамия, тошнота, зрачки расширены. При оказании помощи симптомы гипертермии исчезают. б) возбуждения - характеризуется еще большим ощущением жара и увеличением отдачи тепла, но этого недостаточно и температура повышается до 39-40 градусов. Развивается резкая адинамия, интенсивная головная боль с тошнотой и рвотой, оглушенность, неуверенность в движения, периодически кратковременная потеря сознания. Пульс и дыхание учащены, кожа гиперемирована, влажная, потоотделение усилено. При лечении температура тела снижается и функции нормализуются. в) параличи дыхательного и вазомоторного центров. Патогенетическая терапия (поскольку жаропонижающие вещества при экзо- и эндогенной гипертермии не помогают, температуру тела снижают только охлаждением тела любым путем: проветривания комнаты, раздевание, грелки со льдом на конечности и печень, холодное п
Дата добавления: 2014-11-15; просмотров: 232; Нарушение авторских прав Мы поможем в написании ваших работ! |