![]() Главная страница Случайная лекция ![]() Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика ![]() Мы поможем в написании ваших работ! |
Вероятность случайного события
Событие – появление определенного признака, например, заданного числа частиц газа в единице объема около выбранной точки. Вероятность признака равна относительному числу его появления. Пример. Для газа в сосуде концентрация частиц около точки r есть число частиц в единице объема около r
изменяется с течением времени хаотически.
Событие – наблюдение определенной концентрации
Проводим N измерений концентрации, результат
Область определения вероятности ограничена интервалом
между невозможным Несовместимые события А1, А2,…, Аk не могут произойти одновременно. Например, если бросать шестигранную кость, на каждой грани которой написано число от 1 до 6, можно получить результат: или 1, или 2,…, или 6. Выполняется теорема сложения вероятностей несовместимых событий – вероятность сложного события A или B равна сумме вероятностей отдельных событий. Действительно, выполняется
Если (А1, А2,…, Аk) – полный набор несовместимых событий, то какое-либо одно из них обязательно происходит, тогда выполняется
С учетом (1.2) получаем условие нормировки вероятностей для полного набора несовместимых событий
Пример. Движения молекулы газа по и против некоторой оси образуют полный набор независимых направлений движения
W(влево) + W(вправо) = 1.
Если у гамильтониана системы все направления равноправные, тогда
W(влево) = W(вправо) = 1/2.
Независимые события А1, А2,…, Аk не влияют друг на друга. Например, частицы идеального газа движутся независимо друг от друга, и положение одной частицы не влияет на положение другой частицы. Выполняется теорема об умножении вероятностей независимых событий – вероятность сложного события А и B равна произведению вероятностей отдельных событий
Для k независимых событий
Пример. В объеме V0, все точки которого равноправные, находится частица. Объем V0 разбиваем на N одинаковых ячеек объемом
Если в V0 находится m независимых частиц, то вероятность, что весь газ окажется в объеме V, согласно теореме (1.4) равен
Дата добавления: 2014-02-27; просмотров: 473; Нарушение авторских прав ![]() Мы поможем в написании ваших работ! |