Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Математическое введение в теорию цепей Маркова

Читайте также:
  1. Анализ литературных источников исследования логистических цепей торговых предприятий
  2. Балансы мощностей в комплексной форме для различных цепей
  3. Балансы мощностей для различных цепей
  4. Введение
  5. ВВЕДЕНИЕ
  6. ВВЕДЕНИЕ
  7. Введение
  8. Введение
  9. ВВЕДЕНИЕ
  10. ВВЕДЕНИЕ

Математическое введение в теорию цепей Маркова

Лекция №2

по дисциплине “Теория распределение информации»

Наименование темы: Модели систем массового обслуживания

Модели систем массового обслуживания это основной раздел теории, на который опираются все положения теории телетрафика. Чтобы понять методы анализа систем массового обслуживания, необходимо изучить новый математический аппарат.

Дискретные цепи Маркова.

Задана дискретная цепь Маркова, если для последовательности случайных величин выполняется равенство

.

Это означает, что поток случайных величин определяется только вероятностью перехода от предыдущего значения случайной величины к последующему. Зная начальное распределение вероятностей, можно найти распределение на любом шаге. Величины in можно интерпретировать как номера состояний некоторой динамической системы с дискретным множеством состояний. Если вероятности переходов не зависят от номера шага, то такая цепь Маркова называется однородной и ее определение задается набором вероятностей .

Для однородной Марковской цепи можно определить вероятности перехода из состояния i в состояние j за m шагов

Цепь Маркова называется неприводимой, если каждое ее состояние может быть достигнуто из любого другого состояния. Состояние i называется поглощающим, если для него pii =1.

Состояние называется возвратным, если вероятность попадания в него за конечное число шагов равна единице. В другом случае состояние относится к невозвратным. Возвратное состояние может быть периодическими апериодическим в зависимости от наличия кратных шагов возврата. Введем вероятности возврата в состояние i через n шагов после ухода из этого состояния:

Они позволяют определить среднее число шагов, т.е среднее время возврата:.

Состояние называется возвратным нулевым, если среднее время возвращения в него равно бесконечности, и возвратным ненулевым, если это время конечно.

Теорема 1.

Состояния неприводимой цепи Маркова либо все невозвратные, либо все возвратные нулевые, либо все возвратные ненулевые. В случае периодической цепи все состояния имеют один и тот же период.

Вторая теорема рассматривает вероятности достижения состояний в стационарном (то есть не зависящем от начального распределения вероятностей) режиме.

Теорема 2.

Для неприводимой и апериодической цепи Маркова всегда существуют предельные вероятности, не зависящие от начального распределения вероятностей. Более того, имеет место одна из следующих двух возможностей:

А) все состояния цепи невозвратные или все возвратные нулевые, и тогда все предельные вероятности равны нулю и стационарного состояния не существует;

Б) все состояния возвратные ненулевые и тогда существует стационарное распределение вероятностей:

Состояние называется эргодическим, если оно апериодично и возвратно ненулевое. Если все состояния цепи Маркова эргодичны, то вся цепь называется эргодической. Предельные вероятности эргодической цепи Маркова называют вероятностями состояния равновесия, имея в виду, что зависимость от начального распределения вероятностей полностью отсутствует.

Цепь Маркова с конечным числом состояний (конечная цепь), удобно изображать в виде ориентированного графа, называемого диаграммой переходов (рис.1). Вершины графа ассоциируются с состояниями, а ребра с вероятностями переходов.

Вычисления вероятностей достижения состояний производится прямыми методами или с помощью z-преобразования.

Рис. 1. Цепь Маркова.

У однородных Марковских процессов вероятности переходов не зависят от времени.

Вероятности перехода системы из состояния i на m-том шаге в состояние j на n-том шаге для n > m.

Эти вероятности связаны между собой, так называемым уравнениями Чепмена-Колмогорова.(Chapman - Kolmogorov)

.

Для однородных цепей Маркова эти уравнения упрощаются так

.


Лекция № 3

по дисциплине “Теория распределение информации»

Лекционные занятия: Модели систем массового обслуживания


<== предыдущая страница | следующая страница ==>
Модели потока требований. Поступающие на вход СМО требования (заявки, запросы) образуют поток дискретных событий, полностью определяемый множеством моментов времени их поступления | Непрерывные цепи Маркова

Дата добавления: 2014-03-13; просмотров: 620; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.004 сек.