Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Система дифференциальных уравнений Навье - Стокса

Читайте также:
  1. II. ОСНОВЫ СИСТЕМАТИКИ И ДИАГНОСТИКИ МИНЕРАЛОВ
  2. PR как система
  3. А) Система источников таможенного права.
  4. Автоматизированная система управления гибкой производственной системой (АСУ ГПС)
  5. Автоматическая система сигнализации
  6. Автономная нервная система.
  7. Англо-американская система права (система общего права).
  8. АСУ пассажирскими перевозками. Система «ЭКСПРЕСС»
  9. Б3.ДВ1 СИСТЕМА ИСПОЛНИТЕЛЬНОЙ ВЛАСТИ РФ
  10. Балльно-рейтинговая система оценки успеваемости

Динамика реальной (вязкой жидкости)

При изучении движения реальной (вязкой жидкости) можно пойти двумя разными путями:

воспользоваться готовыми дифференциальными уравнениями и их решения­ми, полученными для идеальной жидкости. Учёт проявления вязких свойств осуществляется с помощью введения в уравнения дополнительных попра­вочных членов уравнения, вывести новые уравнения для вязкой жидкости.

Для практической инженерный деятельности более приемлемым следует считать первый полуэмпирический путь, второй следует использовать лишь в тех случаях, когда требуется детальное изучение процесса движения вязкой жидкости. По этой причине ог­раничимся лишь записью систем дифференциальных уравнений Навье - Стокса и поверх­ностным анализом этих уравнений.

При= const и= const система уравнений значительно упростятся:

Пренебрегая величинами вторых вязкостейи считая жидкость несжимаемой

(р = const), уравнения Навье - Стокса запишутся в следующем виде:

К уравнениям Навье - Стокса в качестве дополнительного уравнения принимается уравнение неразрывности. Учитывая громоздкость и трудность прямого решения задачи в практической деятельности (в случаях, когда это считается допустимым) решение дости­гается первым методом (по аналогии с движением идеальной жидкости).

5.2. Уравнение Бернуллидля элементарной струйки вязкой жидкости

Выделим в элементарной струйке жидко­сти двумя сечениями 1 - 1 и 2 - 2 отсек жид­кости. Отсек жидкости находится под дейст­вием сил давленияи сил тяжести на жидкость в отсеке действуют также силы инерции самой движущейся жидкости, а также силы трения, препятствующие перемещению жидкости. В результате действия сил внутрен­него трения часть механической энергии жид­кости расходуется на преодоление возникающих сопротивлений. По этой причине вели­чины гидродинамических напоров в сечениях будут неодинаковы. Естественно, что//2 .Тогда разность гидродинамических напоров в крайних сечениях отсековбудут как раз характеризовать потери напора на преодоление сил трения. Эта величина носит название потерь напора на трение

В этом случае уравнение Бернулли примет следующий вид:

- потери удельной энергии (преобразование потенциальнойэнергии жидкости в тепловую энергию при трении).

Величинаносит название гидравлического уклона.


<== предыдущая страница | следующая страница ==>
Интерпретация уравнения Бернулли | Уравнение Бернулли для потока реальной жидкости

Дата добавления: 2014-02-26; просмотров: 420; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.003 сек.